1.Brain Aperiodic Dynamics
Zhi-Cai HU ; Zhen ZHANG ; Jiang WANG ; Gui-Ping LI ; Shan LIU ; Hai-Tao YU
Progress in Biochemistry and Biophysics 2025;52(1):99-118
Brain’s neural activities encompass both periodic rhythmic oscillations and aperiodic neural fluctuations. Rhythmic oscillations manifest as spectral peaks of neural signals, directly reflecting the synchronized activities of neural populations and closely tied to cognitive and behavioral states. In contrast, aperiodic fluctuations exhibit a power-law decaying spectral trend, revealing the multiscale dynamics of brain neural activity. In recent years, researchers have made notable progress in studying brain aperiodic dynamics. These studies demonstrate that aperiodic activity holds significant physiological relevance, correlating with various physiological states such as external stimuli, drug induction, sleep states, and aging. Aperiodic activity serves as a reflection of the brain’s sensory capacity, consciousness level, and cognitive ability. In clinical research, the aperiodic exponent has emerged as a significant potential biomarker, capable of reflecting the progression and trends of brain diseases while being intricately intertwined with the excitation-inhibition balance of neural system. The physiological mechanisms underlying aperiodic dynamics span multiple neural scales, with activities at the levels of individual neurons, neuronal ensembles, and neural networks collectively influencing the frequency, oscillatory patterns, and spatiotemporal characteristics of aperiodic signals. Aperiodic dynamics currently boasts broad application prospects. It not only provides a novel perspective for investigating brain neural dynamics but also holds immense potential as a neural marker in neuromodulation or brain-computer interface technologies. This paper summarizes methods for extracting characteristic parameters of aperiodic activity, analyzes its physiological relevance and potential as a biomarker in brain diseases, summarizes its physiological mechanisms, and based on these findings, elaborates on the research prospects of aperiodic dynamics.
2.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
3.Dimethyl fumarate alleviates DEHP-induced intrahepatic cholestasis in maternal rats during pregnancy through NF-κB/NLRP3 signaling pathway
Yue Jiang ; Yun Yu ; Lun Zhang ; Qianqian Huang ; Wenkang Tao ; Mengzhen Hou ; Fang Xie ; Xutao Ling ; Jianqing Wang
Acta Universitatis Medicinalis Anhui 2025;60(1):117-123
Objective :
To investigate the protective effect of dimethyl fumarate(DMF) on maternal intrahepatic cholestasis(ICP) during pregnancy induced by di(2-ethylhexyl) phthalate(DEHP) exposure and its mechanism.
Methods :
Thirty-two 8-week-old female institute of cancer research(ICR) mice were randomly divided into 4 groups: Ctrl group, DEHP group, DMF group and DEHP+DMF group. DEHP and DEHP+DMF groups were treated with DEHP(200 mg/kg) by gavage every morning at 9:00 a.m. DMF and DEHP+DMF groups were treated with DMF(150 mg/kg) from day 13 to day 16 of gestation by gavage. After completion of gavage on day 16 of pregnancy, maternal blood, maternal liver, placenta, and amniotic fluid were collected from pregnant mice after a six-hour abrosia. The body weight of the mother rats and the body weight of the fetus rats were sorted and analyzed; the levels of total bile acid(TBA), alkaline phosphatase(ALP), aspartate aminotransferase/alanine aminotransferase(AST/ALT) in serum and TBA in liver, amniotic fluid and placenta were detected by biochemical analyzer; HE staining was used to observe the pathological changes of liver tissue; Quantitative reverse transcription PCR(RT-qPCR) was used to detect the expression levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-6, IL-1, IL-18 and NOD-like receptor thermal protein domain associated protein 3(NLRP3) in the liver; Western blot was used to detect the expression of the nuclear factor KappaB(NF-κB) and NLRP3.
Results :
Compared with the control group, the body weight of the DEHP-treated dams and pups decreased(P<0.05); the levels of TBA, ALP, AST/ALT in the serum of dams and the levels of TBA in the liver, amniotic fluid, and placenta of dams increased(P<0.05); the histopathological results showed that liver tissue was damaged, bile ducts were deformed, and there was inflammatory cell infiltration around them; the levels of inflammation-related factors TNF-α, IL-6, IL-1, IL-18 and NLRP3 transcription in maternal liver increased(P<0.05); the expression of NF-κB and NLRP3 protein in maternal liver significantly increased( P<0. 05). Compared with the DEHP group,the body weight of both dams and fetuses significantly increased in DEHP + DMF group( P<0. 05); the levels of TBA,ALP,AST/ALT in the serum of dams and amniotic fluid of fetuses decreased( P<0. 05); the degree of liver lesions was improved; the transcription levels of inflammation-related factors TNF-α,IL-6,IL-1,IL-18 and NLRP3 in maternal liver decreased( P<0. 05); the expression of NF-κB and NLRP3 protein in maternal liver significantly decreased( P<0. 05).
Conclusion
DMF can effectively protect the DEHP exposure to lead to female ICP,and its mechanism may be through inhibiting the NF-κB/NLRP3 pathway and reducing liver inflammation.
4.Research progress in digital auscultation: equipment and systems, characteristic parameters, and their application in diagnosis of pulmonary diseases and syndromes
Shuyi ZHANG ; Tao JIANG ; Jiatuo XU
Digital Chinese Medicine 2025;8(1):20-27
Abstract
Traditional Chinese medicine (TCM) auscultation has a long history, and with advancements in equipment and analytical methods, the quantitative analysis of auscultation parameters has determined. However, the complexity and diversity of auscultation, along with variations in devices, analytical methods, and applications, bring challenges to its standardization and deeper application. This review presents the advancements in auscultation equipment and systems, auscultation characteristic parameters, and their application in the diagnosis of pulmonary diseases and syndromes over the past 10 years, while also exploring the progress and challenges of current digital research of auscultation. This review also proposes the establishment of standardized protocols for the collection and analysis of auscultation data, the incorporation of advanced artificial intelligence (AI) auscultation analysis methods, and an exploration of the diagnostic utility of auscultatory features in pulmonary diseases and syndromes, so as to provide more precise decision support for intelligent diagnosis of pulmonary diseases and syndromes
5.Proportions of memory T cells and expression of their associated cytokines in lymph nodes of mice infected with Echinococcus multilocularis
Yinshi LI ; Duolikun ADILAI ; Bingqing DENG ; Ainiwaer ABIDAN ; Sheng SUN ; Wenying XIAO ; Conghui GE ; Na TANG ; Jing LI ; Hui WANG ; Tao JIANG ; Chuanshan ZHANG
Chinese Journal of Schistosomiasis Control 2025;37(2):136-143
Objective To investigate the effects of Echinococcus multilocularis infection on levels of memory T (Tm) cells and their subsets in lymph nodes of mice at different stages of infection, so as to provide new insights into immunotherapy for alveolarechinococcosis. MethodsTwenty-four C57BL/6J mice aged 6 to 9 weeks were randomly divided into the infection group and the control group, of 12 mice in each group. Mice in the infection group were administered with 3 000 E. multilocularis protoscoleces via portal venous injection, while animals in the control group were administered with an equal volume of physiological saline. Three mice from each group were sacrificed 4, 12 weeks and 24 weeks post-infection, and lymph nodes were sampled and stained with hematoxylin and eosin (HE) to investigate the histopathological changes of mouse lymph nodes in the infection group. The expression and localization of T lymphocyte surface markers CD3, CD4, and CD8 were observed in mouse lymph nodes using immunohistochemical staining. In addition, lymphocyte suspensions were prepared from mouse lymph nodes in both groups at different time points post-infection, and the levels of Tm cell subsets and their secreted cytokines were detected using flow cytometry. Results HE staining showed diffuse structural alterations in the subcapsular cortical and paracortical regions of mouse lymph nodes in the infection group 4 weeks post-infection with E. multilocularis. Immunohistochemical staining detected CD3, CD4 and CD8 expression in mouse lymph nodes in both groups. Flow cytometry revealed higher proportions of CD4+ Tm cells [(55.3 ± 4.8)% vs. (38.8 ± 6.1)%; t = -4.259, P < 0.05] and CD4+ tissue-resident Tm (Trm) cells [(57.7 ± 3.7)% vs. (34.1 ± 11.2)%; t = -3.990, P < 0.05] in mouse lymph nodes in the infection group than in the control group 4 weeks post-infection, and higher proportions of CD4+ Tm cells [(34.6 ± 3.2)% vs. (23.3 ± 7.5)%; t = -2.764, P < 0.05] and CD4+ Trm cells [(44.0 ± 1.9)% vs. (31.2 ± 1.5)%; t = -4.039, P < 0.05] in mouse lymph nodes in the infection group than in the control group 24 weeks post-infection. The proportions of CD8+ Tm cells were higher in the infection group than in the control group 4 weeks [(56.8 ± 2.7)% vs. (43.9 ± 5.2)%; t = -4.416, P < 0.01] and 12 weeks post-infection [(25.4 ± 2.7)% vs. (12.0 ± 2.6)%; t = -2.552, P < 0.05], while the proportions of tumor necrosis factor (TNF)-α+ CD4+ T cells [(15.7 ± 5.0)% vs. (49.4 ± 6.4)%; t = 7.150, P < 0.01], TNF-α+CD8+ T cells [(20.7 ± 5.5)% vs. (57.5 ± 8.4)%; t = -6.694, P < 0.01], and TNF-α+ CD8+ Tm cells [7.0% (1.0%) vs. 31.0% (11.0%); Z = -2.236, P < 0.05] were lower in the infection group than in the control group 24 weeks post-infection. Conclusions Tm cells levels are consistently increased in lymph nodes of mice at different stages of E. multilocularis infection, with Trm cells as the predominantly elevated subset. The impaired capacity of CD8+ Tm cells to secrete the effector molecule TNF-α in mouse lymph nodes at the late-stage infection may facilitate chronic parasitism of E. multilocularis.
6.Macrophages in xenotransplantation
Xuyuan ZHU ; Yu ZHANG ; Yuxiang CHEN ; Tao LI ; Xiaojie MA ; Hongtao JIANG
Organ Transplantation 2025;16(4):495-501
Xenotransplantation is one of the effective ways to overcome the shortage of donor organs. However, the molecular incompatibility between xenotransplantation donors and recipients can cause rejection, which greatly limits the clinical application of xenotransplantation. In recent years, researchers have deeply explored the mechanism of xenotransplantation rejection through xenotransplantation models of pig-to-monkey and pig-to-brain death recipients, and found that the innate immune system plays an important role in rejection. Macrophages, as phagocytes in the innate immune system, not only damage xenografts through phagocytosis but also interact with other immune cells to influence the immune microenvironment of xenotransplantation. However, due to the heterogeneity of macrophages, their phenotypes and functions in xenotransplantation rejection remain unclear. Therefore, it is necessary to further explore the role of macrophages in xenotransplantation rejection. This article reviews the latest research progress of macrophages in xenotransplantation rejection, aiming to explore the mechanisms of macrophages in xenotransplantation rejection and provide references for future research.
7.Danggui Shaoyaosan Regulates Nrf2/SLC7A11/GPX4 Signaling Pathway to Inhibit Ferroptosis in Rat Model of Non-alcoholic Fatty Liver Disease
Xinqiao CHU ; Yaning BIAO ; Ying GU ; Meng LI ; Tiantong JIANG ; Yuan DING ; Xiaping TAO ; Shaoli WANG ; Ziheng WEI ; Zhen LIU ; Yixin ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):35-42
ObjectiveTo investigate the effect of Danggui Shaoyaosan on ferroptosis in the rat model of non-alcoholic fatty liver disease (NAFLD) and explore the underlying mechanism based on the nuclear factor E2-related factor 2 (Nrf2)/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway. MethodsThe sixty SD rats were randomly grouped as follows: control, model, Yishanfu (0.144 g·kg-1), and low-, medium-, and high-dose (2.44, 4.88, and 9.76 g·kg-1, respectively) Danggui Shaoyaosan. A high-fat diet was used to establish the rat model of NAFLD. After 12 weeks of modeling, rats were treated with corresponding agents for 4 weeks. Then, the body weight and liver weight were measured, and the liver index was calculated. At the same time, serum and liver samples were collected. The levels or activities of total cholesterol (TC), triglycerides (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and Fe2+ in the serum and TC, TG, free fatty acids (FFA), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX), and Fe2+ in the liver were measured. Hematoxylin-eosin staining and oil red O staining were employed to observe the pathological changes in the liver. Immunofluorescence was used to assess the reactive oxygen species (ROS) content in the liver. Mitochondrial morphology was observed by transmission electron microscopy. The protein levels of Nrf2, SLC7A11, GPX4, transferrin receptor 1 (TFR1), and divalent metal transporter 1 (DMT1) in the liver were determined by Western blot. ResultsCompared with the control group, the model group showed increases in the body weight, liver weight, liver index, levels or activities of TC, TG, ALT, AST, and Fe2+ in the serum, levels of TC, TG, FFA, MDA, Fe2+, and ROS in the liver, and protein levels of TFR1 and DMT1 in the liver (P<0.01), and decreases in the activities of SOD, GPX and the protein levels of Nrf2, SLC7A11, and GPX4 in the liver (P<0.05, P<0.01). Meanwhile, the liver tissue in the model group presented steatosis, iron deposition, mitochondrial shrinkage, and blurred or swollen mitochondrial cristae. Compared with the model group, all doses of Danggui Shaoyaosan reduced the body weight, liver weight, liver index, levels or activities of TC, TG, ALT, AST, and Fe2+ in the serum, levels of TC, TG, FFA, MDA, Fe2+, and ROS in the liver, and protein levels of TFR1 and DMT1 in the liver (P<0.01), while increasing the activities of SOD and GPX and the protein levels of Nrf2, SLC7A11, and GPX4 in the liver (P<0.01). Furthermore, Danggui Shaoyaosan alleviated steatosis, iron deposition, and mitochondrial damage in the liver. ConclusionDanggui Shaoyaosan may inhibit lipid peroxidation and ferroptosis by activating the Nrf2/SLC7A11/GPX4 signaling pathway to treat NAFLD.
8.Not Available.
Yangqi QU ; Jingjing XU ; Tong ZHANG ; Qinjun CHEN ; Tao SUN ; Chen JIANG
Acta Pharmaceutica Sinica B 2024;14(1):170-189
Tumor vaccine is a promising strategy for cancer immunotherapy by introducing tumor antigens into the body to activate specific anti-tumor immune responses. Along with the technological breakthroughs in genetic engineering and delivery systems, messenger ribonucleic acid (mRNA) technology has achieved unprecedented development and application over the last few years, especially the emergency use authorizations of two mRNA vaccines during the COVID-19 pandemic, which has saved countless lives and makes the world witness the powerful efficacy of mRNA technology in vaccines. However, unlike infectious disease vaccines, which mainly induce humoral immunity, tumor vaccines also need to activate potent cellular immunity to control tumor growth, which creates a higher demand for mRNA delivery to the lymphatic organs and antigen-presenting cells (APCs). Here we review the existing bottlenecks of mRNA tumor vaccines and advanced nano-based strategies to overcome those challenges, as well as future considerations of mRNA tumor vaccines and their delivery systems.
9.Latest research and prospect of CD47 in kidney transplantation
Yuxiang CHEN ; Zhuocheng LI ; Liang GAO ; Xuyuan ZHU ; Yu ZHANG ; Tao LI ; Hongtao JIANG
Organ Transplantation 2024;15(2):282-288
CD47 is a transmembrane protein widely expressed on cell surface, which is considered as a key molecule for immune escape. With an increasing number of related studies, the role of CD47 and its ligands in immunomodulatory effects has been gradually understood. Recent studies have investigated the role of CD47 in ischemia-reperfusion injury of allogenetic kidney transplantation, rejection and xenotransplantation. Nevertheless, the specific role and the key mechanism remain elusive. In this article, the structure and function of CD47, common CD47 ligands, the relationship between CD47 and kidney transplantation, and the application of CD47 in kidney transplantation were reviewed, the latest research progress of CD47 in kidney transplantation was summarized, and the limitations of current research and subsequent research direction were analyzed, aiming to provide reference for subsequent application of CD47 in allogeneic and kidney xenotransplantation.
10.Repair effect of ephedrine on lipopolysaccharide-induced microglia function injury and its mechanism
Tao YIN ; Lizhen JIANG ; Mengmeng ZHANG ; Ruijian WANG ; Wenchao ZHANG
China Pharmacy 2024;35(1):33-37
OBJECTIVE To study the repair effect of ephedrine on lipopolysaccharide (LPS)-induced microglia function injury and its mechanism. METHODS Human microglia cells (HMC3) were used as research objects to investigate the effects of different concentrations of ephedrine (75, 150, 300, 600 μg/mL) on the viability and apoptosis of HMC3 cells. HMC3 cells were divided into control group (without drug intervention), LPS group (1 μg/mL), ephedrine group (1 μg/mL LPS+300 μg/mL ephedrine), BAY11-7082 group [1 μg/mL LPS+5 μmol/L nuclear factor-κB (NF-κB) pathway inhibitor BAY11-7082], inhibitor group (1 μg/mL LPS+300 μg/mL ephedrine+5 μmol/L BAY11-7082) and activator group (1 μg/mL LPS+300 μg/mL ephedrine+1 μmol/L NF-κB pathway activator Prostratin). After 24 hours of drug treatment, cell migration, the levels of soluble interleukin-6(sIL-6), interleukin-10(IL-10), superoxide dismutase(SOD)and malondialdehyde(MDA), and the expressions of NF-κB pathway-related proteins were all detected. RESULTS The viability of HMC3 cells could be increased significantly by 300 μg/mL ephedrine, while the apoptotic rate was decreased significantly (P<0.05). Compared with the control group, the number of migrating cells was increased significantly in the LPS group; the levels of sIL-6 and MDA, the phosphorylation of NF-κB protein were increased significantly, while the levels of IL-10 and SOD were decreased significantly (P<0.05). Compared with the LPS group, the above indexes were reversed significantly in the ephedrine group and BAY11-7082 group (P<0.05). Compared with the ephedrine group, the number of migrating cells was decreased significantly in the inhibitor group; the levels of sIL-6 and MDA, the phosphorylation of NF-κB protein were decreased significantly, while the levels of IL-10 and SOD were increased significantly (P<0.05). The above indexes were reversed significantly in the activator group (P<0.05)can repair cell injury by inhibiting LPS induced apoptosis, migration, inflammation and oxidant stress of HMC3 cells, the mechanism of which may be associated with inhibiting the activity of the NF-κB signaling pathway.


Result Analysis
Print
Save
E-mail