1.Expert consensus on clinical application of 177Lu-prostate specific membrane antigen radio-ligand therapy in prostate cancer
Guobing LIU ; Weihai ZHUO ; Yushen GU ; Zhi YANG ; Yue CHEN ; Wei FAN ; Jianming GUO ; Jian TAN ; Xiaohua ZHU ; Li HUO ; Xiaoli LAN ; Biao LI ; Weibing MIAO ; Shaoli SONG ; Hao XU ; Rong TIAN ; Quanyong LUO ; Feng WANG ; Xuemei WANG ; Aimin YANG ; Dong DAI ; Zhiyong DENG ; Jinhua ZHAO ; Xiaoliang CHEN ; Yan FAN ; Zairong GAO ; Xingmin HAN ; Ningyi JIANG ; Anren KUANG ; Yansong LIN ; Fugeng LIU ; Cen LOU ; Xinhui SU ; Lijun TANG ; Hui WANG ; Xinlu WANG ; Fuzhou YANG ; Hui YANG ; Xinming ZHAO ; Bo YANG ; Xiaodong HUANG ; Jiliang CHEN ; Sijin LI ; Jing WANG ; Yaming LI ; Hongcheng SHI
Chinese Journal of Clinical Medicine 2024;31(5):844-850,封3
177Lu-prostate specific membrane antigen(PSMA)radio-ligand therapy has been approved abroad for advanced prostate cancer and has been in several clinical trials in China.Based on domestic clinical practice and experimental data and referred to international experience and viewpoints,the expert group forms a consensus on the clinical application of 177Lu-PSMA radio-ligand therapy in prostate cancer to guide clinical practice.
2.Application value of deep learning based on contrast-enhanced ultrasound for the diagnosis of liver malignant tumors
Shijie WANG ; Jiaqi DENG ; Rong KUANG ; Yuxian WANG ; Cao LI ; Jing ZHOU
Chinese Journal of Ultrasonography 2024;33(2):112-118
Objective:To investigate the clinical value of deep learning model based on contrast enhanced ultrasound (CEUS) video in the differential diagnosis of benign and malignant liver tumors.Methods:Between May 2010 and June 2022, 1 213 patients who underwent CEUS examination for liver masses in the Affiliated Hospital of Southwest Medical University were retrospectively collected, and the enrolled patients were divided into training and independent test cohorts with December 31, 2021 as the time cut-off. In the training cohort, the TimeSformer algorithm was used as the infrastructure, and multiple fixed-time segments were obtained from CEUS arterial videos by using the sliding window of the video, and the classification results of the entire video were obtained after fusing the features of multiple segments, so as to build a deep learning model based on CEUS videos. In the independent test cohort, ROC curves were used to verify the validity of the model and compared with three radiologists with different CEUS experience (R1, R2, and R3, with 3, 6, and 10 years of CEUS experience, respectively).Results:A total of 1 213 patients with liver masses were included in the study, including 1 066 patients in the training cohort (426 cases of malignancy) and 147 patients in the independent test cohort (50 cases of malignancy). The area under curve (AUC)value of deep learning model was 0.93±0.01 in the training cohort and 0.89±0.01 in the independent test cohort, and the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were 80.42%, 74.19%, 92.00%, 94.52% and 65.71%, respectively. Among the three radiologists, R1 had the lowest diagnostic performance, with accuracy, sensitivity, specificity, PPV and NPV of 67.83%, 51.61%, 98.00%, 97.96% and 52.13%, respectively, while the above indicators of R3 were 82.52%, 76.36%, 94.00%, 95.95% and 68.12%, respectively. McNemar′s test showed that the difference between R1 and the deep learning model was statistically significant ( P<0.001), while the differences between R2 and R3 and the deep learning model were not statistically significant ( P=0.720, 0.868). In addition, the analysis time of the model for a single case was (340.24±16.32)ms, while the average analysis time of radiologists was 62.9 s. Conclusions:The deep learning model based on CEUS can better identify benign and malignant liver masses, and may reach the diagnostic level of experienced radiologists.
3.Determination of Organophosphate Esters and Metabolites in Serum and Urine by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry
Wen-Qi WU ; Xiao-Xia WANG ; Wen-Bin LIU ; Li-Rong GAO ; Yang YU ; Tian-Qi JIA ; Zhe-Yuan SHI ; Yun-Chen HE ; Jing-Lin DENG ; Chun-Ci CHEN
Chinese Journal of Analytical Chemistry 2024;52(9):1346-1354,中插29-中插35
A new method was developed for simultaneous detection of total 19 kinds of organophosphate esters(OPEs)and their diester metabolites(di-OPEs)in human serum(1.0 mL)and urine(1.5 mL)with low volume of samples.The target compounds were determined using ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)after acetonitrile liquid-liquid extraction combined with purification using an ENVI-18 solid-phase extraction(SPE)column.OPEs and di-OPEs were separated using a Shim-pack GIST C18 column(100 mm×2.1 mm,2 μm)with a Shim-pack GIST-HP(G)C18 guard column.An electrospray ionization source(ESI)was employed in mass spectrometry analysis,with positive/negative ion mode using the multiple reaction monitoring(MRM).All target compounds were separated within 15 min,and exhibited good linear relationships in the concentration range of 2-100 ng/mL,with correlation coefficients(R2)above 0.994.The method detection limits(MDL)in serum ranged from 0.001 to 0.178 ng/mL and the MDL in urine ranged from 0.001 to 0.119 ng/mL.The recoveries of the analytes spiked in serum and urine matrices at two concentration levels were 30.5%-126.8%,with the relative standard deviations(RSDs)ranged from 1%to 23%.In addition,paired serum and urine samples from 11 patients were analyzed.For all samples tested,the internal standards of OPEs exhibited recoveries between 61%and 114%,whereas the internal standards for di-OPEs had recoveries ranging from 43%to 103%.OPEs and di-OPEs exhibited high detection frequencies in 22 serum and urine samples.Triethyl phosphate(TEP),tributyl phosphate(TBP),tris(2-ethylhexyl)phosphate(TEHP),tris(2-butoxyethyl)phosphate(TBEP),tris(1-chloro-2-propyl)phosphate(TCIPP),triphenyl phosphate(TPHP),tri-m-tolyl-phosphate(TMTP)and 2-ethylhexyl diphenyl phosphate(EHDPP)were universally detected in all serum samples.TCIPP was identified at the highest concentrations(median 0.548 ng/mL)in serum samples.In urine samples,the detection frequency for 12 kinds of target compounds reached 100%.Notably,TBP emerged as the predominant OPE in urine,demonstrating a median concentration of 0.506 ng/mL.Regarding di-OPEs,bis(2-chloroethyl)phosphate(BCEP)and bis(2-butoxyethyl)hydrogen phosphate(BBOEP)were the most abundant in urine,with median concentrations of 6.404 and 2.136 ng/mL,respectively.The total concentrations of OPEs and di-OPEs in serum and urine were 1.580-3.843 ng/mL and 5.149-17.537 ng/mL,respectively.These results not only confirmed the effectiveness of the method in detection of OPEs and di-OPEs in biological matrices,but also revealed the widespread presence of OPE compounds in human body and pointed to potential exposure risks.
4.Surveillance of antifungal resistance in clinical isolates of Candida spp.in East China Invasive Fungal Infection Group from 2018 to 2022
Dongjiang WANG ; Wenjuan WU ; Jian GUO ; Min ZHANG ; Huiping LIN ; Feifei WAN ; Xiaobo MA ; Yueting LI ; Jia LI ; Huiqiong JIA ; Lingbing ZENG ; Xiuhai LU ; Yan JIN ; Jinfeng CAI ; Wei LI ; Zhimin BAI ; Yongqin WU ; Hui DING ; Zhongxian LIAO ; Gen LI ; Hui ZHANG ; Hongwei MENG ; Changzi DENG ; Feng CHEN ; Na JIANG ; Jie QIN ; Guoping DONG ; Jinghua ZHANG ; Wei XI ; Haomin ZHANG ; Rong TANG ; Li LI ; Suzhen WANG ; Fen PAN ; Jing GAO ; Lu JIANG ; Hua FANG ; Zhilan LI ; Yiqun YUAN ; Guoqing WANG ; Yuanxia WANG ; Liping WANG
Chinese Journal of Infection and Chemotherapy 2024;24(4):402-409
Objective To monitor the antifungal resistance of clinical isolates of Candida spp.in the East China region.Methods MALDI-TOF MS or molecular methods were used to re-identify the strains collected from January 2018 to December 2022.Antifungal susceptibility testing was performed using the broth microdilution method.The susceptibility test results were interpreted according to the breakpoints of 2022 Clinical and Laboratory Standards Institute(CLSI)documents M27 M44s-Ed3 and M57s-Ed4.Results A total of 3 026 strains of Candida were collected,65.33%of which were isolated from sterile body sites,mainly from blood(38.86%)and pleural effusion/ascites(10.21%).The predominant species of Candida were Candida albicans(44.51%),followed by Candida parapsilosis complex(19.46%),Candida tropicalis(13.98%),Candida glabrata(10.34%),and other Candida species(0.79%).Candida albicans showed overall high susceptibility rates to the 10 antifungal drugs tested(the lowest rate being 93.62%).Only 2.97%of the strains showed dose-dependent susceptibility(SDD)to fluconazole.Candida parapsilosis complex had a SDD rate of 2.61%and a resistance rate of 9.42%to fluconazole,and susceptibility rates above 90%to other drugs.Candida glabrata had a SDD rate of 92.01%and a resistance rate of 7.99%to fluconazole,resistance rates of 32.27%and 48.24%to posaconazole and voriconazole non-wild-type strains(NWT),respectively,and susceptibility rates above 90%to other drugs.Candida tropicalis had resistance rates of 29.55%and 26.24%to fluconazole and voriconazole,respectively,resistance rates of 76.60%and 21.99%to posaconazole and echinocandins non-wild-type strains(NWT),and a resistance rate of 2.36%to echinocandins.Conclusions The prevalence and species distribution of Candida spp.in the East China region are consistent with previous domestic and international reports.Candida glabrata exhibits certain degree of resistance to fluconazole,while Candida tropicalis demonstrates higher resistance to triazole drugs.Additionally,echinocandins resistance has emerged in Candida albicans,Candida glabrata,Candida tropicalis,and Candida parapsilosis.
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
6.Analysis of risk factors of radiation-induced toxicity in limited-stage small cell lung cancer treated with hypofractionated intensity-modulated radiotherapy.
Jing Jing ZHAO ; Nan BI ; Tao ZHANG ; Jian Yang WANG ; Lei DENG ; Xin WANG ; Dong Fu CHEN ; Jian Rong DAI ; Luhua WANG
Chinese Journal of Oncology 2023;45(7):627-633
Objective: To compare the incidence of radiation-related toxicities between conventional and hypofractionated intensity-modulated radiation therapy (IMRT) for limited-stage small cell lung cancer (SCLC), and to explore the risk factors of hypofractionated radiotherapy-induced toxicities. Methods: Data were retrospectively collected from consecutive limited-stage SCLC patients treated with definitive concurrent chemoradiotherapy in Cancer Hospital of Chinese Academy of Medical Sciences from March 2016 to April 2022. The enrolled patients were divided into two groups according to radiation fractionated regimens. Common Terminology Criteria for Adverse Events (CTCAE, version 5.0) was used to evaluate the grade of radiation esophagus injuries and lung injuries. Logistic regression analyses were used to identify factors associated with radiation-related toxicities in the hypofractionated radiotherapy group. Results: Among 211 enrolled patients, 108 cases underwent conventional IMRT and 103 patients received hypofractionated IMRT. The cumulative incidences of acute esophagitis grade ≥2 [38.9% (42/108) vs 35.0% (36/103), P=0.895] and grade ≥ 3 [1.9% (2/108) vs 5.8% (6/103), P=0.132] were similar between conventional and hypofractionated IMRT group. Late esophagus injuries grade ≥2 occurred in one patient in either group. No differences in the cumulative incidence of acute pneumonitis grade ≥2[12.0% (13/108) vs 5.8% (6/103), P=0.172] and late lung injuries grade ≥2[5.6% (6/108) vs 10.7% (11/103), P=0.277] were observed. There was no grade ≥3 lung injuries occurred in either group. Using multiple regression analysis, mean esophageal dose ≥13 Gy (OR=3.33, 95% CI: 1.23-9.01, P=0.018) and the overlapping volume between planning target volume (PTV) and esophageal ≥8 cm(3)(OR=3.99, 95% CI: 1.24-12.79, P=0.020) were identified as the independent risk factors associated with acute esophagitis grade ≥2 in the hypofractionated radiotherapy group. Acute pneumonitis grade ≥2 was correlated with presence of chronic obstructive pulmonary disease (COPD, P=0.025). Late lung injuries grade ≥2 was correlated with tumor location(P=0.036). Conclusions: Hypofractionated IMRT are tolerated with manageable toxicities for limited-stage SCLC patients treated with IMRT. Mean esophageal dose and the overlapping volume between PTV and esophageal are independently predictive factors of acute esophagitis grade ≥2, and COPD and tumor location are valuable factors of lung injuries for limited-stage SCLC patients receiving hyofractionated radiotherapy. Prospective studies are needed to confirm these results.
Humans
;
Small Cell Lung Carcinoma/pathology*
;
Lung Neoplasms/pathology*
;
Radiotherapy, Intensity-Modulated/methods*
;
Retrospective Studies
;
Lung Injury
;
Radiotherapy Dosage
;
Radiation Injuries/epidemiology*
;
Esophagitis/epidemiology*
;
Risk Factors
;
Pulmonary Disease, Chronic Obstructive/complications*
7.Recommendations for prescription review of commonly used anti-seizure medications in treatment of children with epilepsy
Qianqian QIN ; Qian DING ; Xiaoling LIU ; Heping CAI ; Zebin CHEN ; Lina HAO ; Liang HUANG ; Yuntao JIA ; Lingyan JIAN ; Zhong LI ; Hua LIANG ; Maochang LIU ; Qinghong LU ; Xiaolan MO ; Jing MIAO ; Yanli REN ; Huajun SUN ; Yanyan SUN ; Jing XU ; Meixing YAN ; Li YANG ; Shengnan ZHANG ; Shunguo ZHANG ; Xin ZHAO ; Jie DENG ; Fang FANG ; Li GAO ; Hong HAN ; Shaoping HUANG ; Li JIANG ; Baomin LI ; Jianmin LIANG ; Jianxiang LIAO ; Zhisheng LIU ; Rong LUO ; Jing PENG ; Dan SUN ; Hua WANG ; Ye WU ; Jian YANG ; Yuqin ZHANG ; Jianmin ZHONG ; Shuizhen ZHOU ; Liping ZOU ; Yuwu JIANG ; Xiaoling WANG
Chinese Journal of Applied Clinical Pediatrics 2023;38(10):740-748
Anti-seizure medications (ASMs) are the main therapy for epilepsy.There are many kinds of ASMs with complex mechanism of action, so it is difficult for pharmacists to examine prescriptions.This paper put forward some suggestions on the indications, dosage forms/routes of administration, appropriateness of usage and dosage, combined medication and drug interaction, long-term prescription review, individual differences in pathophysiology of children, and drug selection when complicated with common epilepsy, for the reference of doctors and pharmacists.
8.Analysis of transmission dynamics and effectiveness of control of local epidemics caused by the Omicron BA.2 and BA.5.2 COVID-19 strains in Fujian Province
Wen-Jing YE ; Sheng-Gen WU ; Mei-Rong ZHAN ; Zheng-Qiang HUANG ; Shao-Jian CAI ; Wu CHEN ; Jian-Ming OU ; Jie-Feng HUANG ; Tian-Mu CHEN ; Yan-Qin DENG ; Kui-Cheng ZHENG
Chinese Journal of Zoonoses 2023;39(11):1065-1071
This study evaluated the scientific nature and effectiveness of iterative optimization of prevention and control measures for local outbreaks caused by the BA.2 and BA.5.2 COVID-19 strains in Fujian Province in 2022,to provide a scientif-ic basis for responding to future new or recurrent respiratory infectious diseases.According to the theory of infectious disease dynamics,relevant information regarding the local epidemic situation caused by the BA.2 sub-type Omicron virus strain in March 2022 and BA.5.2 sub-type Omicron virus strain in October 2022 in Fujian Province was collected.The susceptible exposed infectious removed(SEIAR)model of COVID-19 infection with a latent period and asymptomatic infected persons was used to analyze the transmission dynam-ics of two local epidemic situations,and evaluate the preven-tion and control effects.The incubation period of the BA.2 epidemic was 3 days(1~9 days),the intergenerational inter-val was 3 days(1~5 days),and the initial Rt was 3.0(95%CI:2.7~3.3).The incubation period of the BA.5.2 epidemic was 2 days(1~6 days),the intergenerational interval was 1 day(0~2 days),and the initial R,was 1.9(95%CI:1.7~2.1).The fittingresults for the BA.2 and BA.5.2 epidemics were good,and no statistical difference was observed between the predic-ted and actual numbers of cases(x2BA.2=31.53,x2BA.5.2=27.88,P>0.05).If an emergency response had not been initiated,the BA.2 epidemic would have continued to spread andpeak on April 7th,with an estimated 638 035 cases.The BA.5.2 epidemic would have rapidly spread,reaching a peak on November 14th,with an estimated 685 940 cases.If one incubation period were detected early,the scale of the BA.2 epidemic would have decreased by 25.73%;if two incubation periods were detected early,the scale would have decreased by 79.56%,and if one incubation period had been delayed,the scale would have expanded by 13.72%.If one incubation period had been detected early in the BA.5.2 epidemic,the scale would have decreased by 35.04%;if two incubation periods had been detected early,the scale would have decreased by 92.47%;and if one incubation period had been delayed,the scale would have increased by 19.75%.The guiding ideology,and the prevention and control measures for handling two local epidemics were optimized and iterated.Our study indicated that implementing the"four early"measures ef-fectively decreased the scale of the epidemic,and earlier detection was associated with more significant control effects.This study provides valuable information for the prevention and control of new or recurrent respiratory infectious diseases.
9.A multicenter epidemiological study of acute bacterial meningitis in children.
Cai Yun WANG ; Hong Mei XU ; Jiao TIAN ; Si Qi HONG ; Gang LIU ; Si Xuan WANG ; Feng GAO ; Jing LIU ; Fu Rong LIU ; Hui YU ; Xia WU ; Bi Quan CHEN ; Fang Fang SHEN ; Guo ZHENG ; Jie YU ; Min SHU ; Lu LIU ; Li Jun DU ; Pei LI ; Zhi Wei XU ; Meng Quan ZHU ; Li Su HUANG ; He Yu HUANG ; Hai Bo LI ; Yuan Yuan HUANG ; Dong WANG ; Fang WU ; Song Ting BAI ; Jing Jing TANG ; Qing Wen SHAN ; Lian Cheng LAN ; Chun Hui ZHU ; Yan XIONG ; Jian Mei TIAN ; Jia Hui WU ; Jian Hua HAO ; Hui Ya ZHAO ; Ai Wei LIN ; Shuang Shuang SONG ; Dao Jiong LIN ; Qiong Hua ZHOU ; Yu Ping GUO ; Jin Zhun WU ; Xiao Qing YANG ; Xin Hua ZHANG ; Ying GUO ; Qing CAO ; Li Juan LUO ; Zhong Bin TAO ; Wen Kai YANG ; Yong Kang ZHOU ; Yuan CHEN ; Li Jie FENG ; Guo Long ZHU ; Yan Hong ZHANG ; Ping XUE ; Xiao Qin LI ; Zheng Zhen TANG ; De Hui ZHANG ; Xue Wen SU ; Zheng Hai QU ; Ying ZHANG ; Shi Yong ZHAO ; Zheng Hong QI ; Lin PANG ; Cai Ying WANG ; Hui Ling DENG ; Xing Lou LIU ; Ying Hu CHEN ; Sainan SHU
Chinese Journal of Pediatrics 2022;60(10):1045-1053
Objective: To analyze the clinical epidemiological characteristics including composition of pathogens , clinical characteristics, and disease prognosis acute bacterial meningitis (ABM) in Chinese children. Methods: A retrospective analysis was performed on the clinical and laboratory data of 1 610 children <15 years of age with ABM in 33 tertiary hospitals in China from January 2019 to December 2020. Patients were divided into different groups according to age,<28 days group, 28 days to <3 months group, 3 months to <1 year group, 1-<5 years of age group, 5-<15 years of age group; etiology confirmed group and clinically diagnosed group according to etiology diagnosis. Non-numeric variables were analyzed with the Chi-square test or Fisher's exact test, while non-normal distrituction numeric variables were compared with nonparametric test. Results: Among 1 610 children with ABM, 955 were male and 650 were female (5 cases were not provided with gender information), and the age of onset was 1.5 (0.5, 5.5) months. There were 588 cases age from <28 days, 462 cases age from 28 days to <3 months, 302 cases age from 3 months to <1 year of age group, 156 cases in the 1-<5 years of age and 101 cases in the 5-<15 years of age. The detection rates were 38.8% (95/245) and 31.5% (70/222) of Escherichia coli and 27.8% (68/245) and 35.1% (78/222) of Streptococcus agalactiae in infants younger than 28 days of age and 28 days to 3 months of age; the detection rates of Streptococcus pneumonia, Escherichia coli, and Streptococcus agalactiae were 34.3% (61/178), 14.0% (25/178) and 13.5% (24/178) in the 3 months of age to <1 year of age group; the dominant pathogens were Streptococcus pneumoniae and the detection rate were 67.9% (74/109) and 44.4% (16/36) in the 1-<5 years of age and 5-<15 years of age . There were 9.7% (19/195) strains of Escherichia coli producing ultra-broad-spectrum β-lactamases. The positive rates of cerebrospinal fluid (CSF) culture and blood culture were 32.2% (515/1 598) and 25.0% (400/1 598), while 38.2% (126/330)and 25.3% (21/83) in CSF metagenomics next generation sequencing and Streptococcus pneumoniae antigen detection. There were 4.3% (32/790) cases of which CSF white blood cell counts were normal in etiology confirmed group. Among 1 610 children with ABM, main intracranial imaging complications were subdural effusion and (or) empyema in 349 cases (21.7%), hydrocephalus in 233 cases (14.5%), brain abscess in 178 cases (11.1%), and other cerebrovascular diseases, including encephalomalacia, cerebral infarction, and encephalatrophy, in 174 cases (10.8%). Among the 166 cases (10.3%) with unfavorable outcome, 32 cases (2.0%) died among whom 24 cases died before 1 year of age, and 37 cases (2.3%) had recurrence among whom 25 cases had recurrence within 3 weeks. The incidences of subdural effusion and (or) empyema, brain abscess and ependymitis in the etiology confirmed group were significantly higher than those in the clinically diagnosed group (26.2% (207/790) vs. 17.3% (142/820), 13.0% (103/790) vs. 9.1% (75/820), 4.6% (36/790) vs. 2.7% (22/820), χ2=18.71, 6.20, 4.07, all P<0.05), but there was no significant difference in the unfavorable outcomes, mortility, and recurrence between these 2 groups (all P>0.05). Conclusions: The onset age of ABM in children is usually within 1 year of age, especially <3 months. The common pathogens in infants <3 months of age are Escherichia coli and Streptococcus agalactiae, and the dominant pathogen in infant ≥3 months is Streptococcus pneumoniae. Subdural effusion and (or) empyema and hydrocephalus are common complications. ABM should not be excluded even if CSF white blood cell counts is within normal range. Standardized bacteriological examination should be paid more attention to increase the pathogenic detection rate. Non-culture CSF detection methods may facilitate the pathogenic diagnosis.
Adolescent
;
Brain Abscess
;
Child
;
Child, Preschool
;
Escherichia coli
;
Female
;
Humans
;
Hydrocephalus
;
Infant
;
Infant, Newborn
;
Male
;
Meningitis, Bacterial/epidemiology*
;
Retrospective Studies
;
Streptococcus agalactiae
;
Streptococcus pneumoniae
;
Subdural Effusion
;
beta-Lactamases
10.Prokaryotic expression and serological analysis of the head domain of influenza A virus hemagglutinin
Xuanxuan NIAN ; Jing LIU ; Tao DENG ; Junying LI ; Rong ZHOU ; Guomei ZHANG ; Ning MA ; Zhegang ZHANG ; Jiayou ZHANG ; Xiaoming YANG
Chinese Journal of Microbiology and Immunology 2022;42(11):857-864
Objective:To express the head domain of influenza A virus hemagglutinin (HA) in a prokaryotic expression system and to evaluate its immunogenicity.Methods:The genes encoding the HA head domains of H1N1 and H3N2 influenza viruses were cloned into pET-22b(+ ) prokaryotic expression plasmid. After the induction with IPTG, the fusion proteins rH1N1-HA and rH3N2-HA containing HA head domain and His-tag were expressed and obtained from E. coli BL21. SDS-PAGE and Western blot was used to verify the expression of the recombinant proteins. Rabbits were immunized with multiple doses of the purified recombinant proteins to obtain polyclonal antibodies against the HA head domains of H1N1 and H3N2. The immunogenicity of the recombinant proteins was evaluated in BALB/c mice. Results:rH1N1-HA and rH3N2-HA induced protective antibodies (geometric mean titer ≥40) in mice and could be used as protective antigens. Polyclonal antibodies against rH1N1-HA and rH3N2-HA could be used as important materials for Western blot, ELISA and other immunological assays.Conclusions:The HA head domains prepared in this study could be used as protective antigens to induce protective antibodies in mice. Polyclonal antibodies against the HA head domains could be used for immunological and serological studies of influenza A viruses.

Result Analysis
Print
Save
E-mail