1.The Role of Mechanical Sensitive Ion Channel Piezo in Digestive System Diseases
Si-Qi WANG ; Xiang-Yun YAN ; Yan-Qiu LI ; Fang-Li LUO ; Jun-Peng YAO ; Pei-Tao MA ; Yu-Jun HOU ; Hai-Yan QIN ; Yun-Zhou SHI ; Ying LI
Progress in Biochemistry and Biophysics 2024;51(8):1883-1894
The Piezo protein is a non-selective mechanosensitive cation channel that exhibits sensitivity to mechanical stimuli such as pressure and shear stress. It converts mechanical signals into bioelectric activity within cells, thus triggering specific biological responses. In the digestive system, Piezo protein plays a crucial role in maintaining normal physiological activities, including digestion, absorption, metabolic regulation, and immune modulation. However, dysregulation in Piezo protein expression may lead to the occurrence of several pathological conditions, including visceral hypersensitivity, impairment of intestinal mucosal barrier function, and immune inflammation.Therefore, conducting a comprehensive review of the physiological functions and pathological roles of Piezo protein in the digestive system is of paramount importance. In this review, we systematically summarize the structural and dynamic characteristics of Piezo protein, its expression patterns, and physiological functions in the digestive system. We particularly focus on elucidating the mechanisms of action of Piezo protein in digestive system tumor diseases, inflammatory diseases, fibrotic diseases, and functional disorders. Through the integration of the latest research findings, we have observed that Piezo protein plays a crucial role in the pathogenesis of various digestive system diseases. There exist intricate interactions between Piezo protein and multiple phenotypes of digestive system tumors such as proliferation, apoptosis, and metastasis. In inflammatory diseases, Piezo protein promotes intestinal immune responses and pancreatic trypsinogen activation, contributing to the development of ulcerative colitis, Crohn’s disease, and pancreatitis. Additionally, Piezo1, through pathways involving co-action with the TRPV4 ion channel, facilitates neutrophil recruitment and suppresses HIF-1α ubiquitination, thereby mediating organ fibrosis in organs like the liver and pancreas. Moreover, Piezo protein regulation by gut microbiota or factors like age and gender can result in increased or decreased visceral sensitivity, and alterations in intestinal mucosal barrier structure and permeability, which are closely associated with functional disorders like irritable bowel sydrome (IBS) and functional consitipaction (FC). A thorough exploration of Piezo protein as a potential therapeutic target in digestive system diseases can provide a scientific basis and theoretical support for future clinical diagnosis and treatment strategies.
2.Study on inhibitory effect of alisol B on non-small cell lung cancer based on network pharmacology and its mechanism
Liu-Yan XIANG ; Wen-Xuan WANG ; Si-Meng GU ; Xiao-Qian ZHANG ; Lu-Yao LI ; Yu-Qian LI ; Yuan-Ru WANG ; Qi-Qi LEI ; Xue YANG ; Ya-Jun CAO ; Xue-Jun LI
Chinese Pharmacological Bulletin 2024;40(12):2375-2384
Aim To explore the potential genes and mechanism of alisol B in the treatment of non-small cell lung cancer(NSCLC).Methods The proliferation and migration of NSCLC cells were detected by CCK-8 and Transwell.Genes of NSCLC and alisol B were col-lected through TCGA and compound gene prediction database,and their intersection genes were obtained.The network of protein-protein interaction(PPI)was constructed by using String database,and the top 20 key nodes were screened out,and the prognosis-related proteins related to the prognosis of NSCLC were screened out by using R language,and the intersection of them was obtained.The potential mechanism of ali-sol B on NSCLC was explored by KEGG and GO en-richment analysis and the relationship between related genes and immune cells,which was verified by cell-lev-el experiments.Results Alisol B inhibited the cell activity and migration ability of NSCLC cells.Five im-portant genes were identified by network pharmacologi-cal analysis:CCNE1,CDK1,COL1A1,COL1A2 and COL3A1.The results of cell experiment showed that al-isol B down-regulated the expression of Cyclin E1,CDK1 and COL1A2 in NSCLC cells.In addition,alisol B could inhibit the expression of COL1A2 and M2 macrophage marker CD206 in macrophages.Conclu-sions Alisol B may inhibit the proliferation of tumor cells by down-regulating CDK1 and Cyclin E1,and may affect the function of macrophages by inhibiting COL1A2,thus regulating the tumor immune microenvi-ronment and inhibiting NSCLC.
3.Research progress on multi-target regulation strategies of tumor microenvironment based on nano-drug delivery system
Jing LI ; Ting PAN ; Si-yao ZHAO ; Xiao-qing CHEN ; Hao-tian YIN ; Xiao-ye JI ; Qi-fan WU ; Wei WANG
Acta Pharmaceutica Sinica 2023;58(3):536-549
Tumor microenvironment (TME) is composed of endothelial cells, pericytes, immune cells, cancer-associated fibroblasts (CAFs), cancer stem cells (CSCs), extracellular matrix (ECM) and other components of the complex biological environment. TME interacts with the tumor cells through a large amount of signaling pathways, participates in the process of tumor progression, invasion, and metastasis. Hence, TME has become a potential therapeutic target for cancer treatment, exhibiting excellent therapeutic potential and research value in the field of cancer treatment. Currently, the novel nanotechnology has been widely applied in anticancer therapy, and nanotechnology-mediated drug delivery system is being explored to apply in TME modulation to inhibit tumor progression. Nanotechnology-mediated drug delivery has many advantages over traditional therapeutic modalities, including longer circulation times, improved bioavailability, and reduced toxicity. This review summarized the research of targeted nano-drug delivery based on TME regulation, including regulation strategies based on CSCs, CAFs, immune cells, ECM, tumor vascularization, exosomes, and microbiota. In addition, we summarized the advantages, opportunities, and challenges of TME regulation strategy compared with traditional treatment strategy, which provides a reference for the application of nano-drug delivery system based on TME regulation strategy in tumor precision therapy.
4.Identification of constituents in vitro and blood-absorbed ingredients of protective effect on acute liver injury from Yin Chen Hao decoction based on UPLC-QTOF/MS
Yi-qing YAO ; Qi CAO ; Xuan WANG ; Hui-lin MA ; Yu-miao CHEN ; Si-yi ZHAO ; Min-xuan GUO ; Jia-meng HU ; Dong-yao WANG ; Di-ya LÜ
Acta Pharmaceutica Sinica 2023;58(5):1173-1180
To identify the active constituents
5.Mechanism of Xiaoer Chiqiao Qingre Granules in clearing heat and removing food stagnation in suckling rats with fever and food accumulation based on metabolomics.
Meng-Yao CUI ; Yan ZHANG ; Nan SI ; Yan-Yan ZHOU ; Kun WANG ; Hong-Jie WANG ; Geng LI ; Li-Qi NI ; Hai-Yu ZHAO
China Journal of Chinese Materia Medica 2023;48(3):811-822
Children's fever is often accompanied by food accumulation. Traditional Chinese medicine believes that removing food stagnation while clearing heat of children can effectively avoid heat damage. To systematically evaluate the efficacy of Xiaoer Chiqiao Qingre Granules(XRCQ) in clearing heat and removing food accumulation and explore its potential mechanism, this study combined suckling SD rats fed with high-sugar and high-fat diet with injection of carrageenan to induce rat model of fever and food accumulation. This study provided references for the study on the pharmacodynamics and mechanism of XRCQ. The results showed that XRCQ effectively reduced the rectal temperature of suckling rats, improved the inflammatory environment such as the content of interleukin-1β(IL-1β), interleukin-2(IL-2), interferon-γ(IFN-γ), white blood cells, and monocytes. XRCQ also effectively repaired intestinal injury and enhanced intestinal propulsion function. According to the confirmation of its efficacy of clearing heat, the thermolytic mechanism of XRCQ was further explored by non-targeted and targeted metabolomics methods based on LTQ-Orbitrap MS/MS and UPLC-QQQ-MS/MS. Non-target metabolomics analysis of brain tissue samples was performed by QI software combined with SIMCA-P software, and 22 endogenous metabolites that could be significantly regulated were screened out. MetaboAnalyst pathway enrichment results showed that the intervention mechanism was mainly focused on tyrosine metabolism, tricarboxylic acid cycle, inositol phosphate metabolism, and other pathways. At the same time, the results of targeted metabolomics of brain tissue samples showed that XRCQ changed the vitality of digestive system, and inhibited abnormal energy metabolism and inflammatory response, playing a role in clearing heat and removing food stagnation from multiple levels.
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Hot Temperature
;
Tandem Mass Spectrometry
;
Metabolomics
;
Food
;
Fever
;
Interferon-gamma
6.Study on HBV-related acute-on-chronic liver failure risk factors and novel predictive survival model.
Yu Hui TANG ; Xiao Xiao ZHANG ; Si Yu ZHANG ; Lu Yao CUI ; Yi Qi WANG ; Ning Ning XUE ; Lu LI ; Dan Dan ZHAO ; Yue Min NAN
Chinese Journal of Hepatology 2023;31(1):84-89
Objective: To identify the predisposing factors, clinical characteristics, and risk factors of disease progression to establish a novel predictive survival model and evaluate its application value for hepatitis B virus-related acute-on-chronic liver failure. Methods: 153 cases of HBV-ACLF were selected according to the guidelines for the diagnosis and treatment of liver failure (2018 edition) of the Chinese Medical Association Hepatology Branch. Predisposing factors, the basic liver disease stage, therapeutic drugs, clinical characteristics, and factors affecting survival status were analyzed. Cox proportional hazards regression analysis was used to screen prognostic factors and establish a novel predictive survival model. The receiver operating characteristic curve (ROC) was used to evaluate predictive value with the Model for End-Stage Liver Disease (MELD) and the Chronic Liver Failure Consortium Acute-on-Chronic Liver Failure score (CLIF-C ACLF). Results: 80.39% (123/153) based on hepatitis B cirrhosis had developed ACLF. HBV-ACLF's main inducing factors were the discontinuation of nucleos(t)ide analogues (NAs) and the application of hepatotoxic drugs, including Chinese patent medicine/Chinese herbal medicine, non-steroidal anti-inflammatory drugs, anti-tuberculosis drugs, central nervous system drugs, anti-tumor drugs, etc. 34.64% of cases had an unknown inducement. The most common clinical symptoms at onset were progressive jaundice, poor appetite, and fatigue. The short-term mortality rate was significantly higher in patients complicated with hepatic encephalopathy, upper gastrointestinal hemorrhage, hepatorenal syndrome, and infection (P < 0.05). Lactate dehydrogenase, albumin, the international normalized ratio, the neutrophil-to-lymphocyte ratio, hepatic encephalopathy, and upper gastrointestinal bleeding were the independent predictors for the survival status of patients. The LAINeu model was established. The area under the curve for evaluating the survival of HBV-ACLF was 0.886, which was significantly higher than the MELD and CLIF-C ACLF scores (P < 0.05), and the prognosis was worse when the LAINeu score ≥ -3.75. Conclusion: Discontinuation of NAs and the application of hepatotoxic drugs are common predisposing factors for HBV-ACLF. Hepatic decompensation-related complications and infection accelerate the disease's progression. The LAINeu model can predict patient survival conditions more accurately.
Humans
;
Hepatitis B virus
;
Hepatic Encephalopathy/complications*
;
Acute-On-Chronic Liver Failure/diagnosis*
;
End Stage Liver Disease/complications*
;
Severity of Illness Index
;
Risk Factors
;
ROC Curve
;
Prognosis
;
Retrospective Studies
7.Repair impact of vibration exercise with different frequencies on articular cartilage of rats with early knee osteoarthritis and its JNK/NF-κB, SOX9 mechanisms.
Zong-Bao WANG ; Lian WANG ; Qi-Qi LIU ; Yong-Hui YANG ; Pan LIU ; Si-Liang LI ; Chang-Feng YAO
Chinese Journal of Applied Physiology 2022;38(1):41-46
Objective: To investigate the repair effect and JNK/NF-κB,SOX9 mechanisms of vibration exercise with different frequencies on articular cartilage in rats with early knee osteoarthritis. Methods: Forty-eight adult male SD rats were randomly divided into six groups(n=8):model control group(MC),high frequency vibration group 1 (GP1,60 Hz),high frequency vibration 2 group (GP2,40 Hz),medium frequency vibration group (ZP,20 Hz),minor frequency group(DP,10 Hz)and normal control group(NC). Except for NC group,the rats in each group were made into early knee osteoarthritis model after six weeks of knee joint cavity injection of papain solution and 2% mixture l-cysteine on the 1st,4 th and 7th day. Each exercise group was subjected vibration to 40 minutes a day with amplitude of 2~5 mm and 5 days a week. Four weeks later, the articular cartilage of the lateral femoral condyle of the both back leg knee joints were detected by HE staining,serine O staining and Mankin scores for morphological observation. The expression levels of JNK,NF-κB p65 and Sox9 mRNA in articular cartilage of the medial femoral condyle were detected by RT-qPCR,and the protein expressions of JNK,NF-κB p65 and Sox9 were detected by Western blot. Results: Compared with the NC group,the Mankin score in other groups was significantly higher (P<0.01). Compared with the MC group,the Mankin score of each vibration group was significantly lower(P<0.05),the mRNA and protein expressions of JNK and NF-κB p65 in each vibration training group were significantly lower (P<0.01),the expressions of Sox9 mRNA and protein in vibration training group were increased significantly (P<0.01). Compared with the higher frequency group,the Mankin score,the mRNA and protein expressions of JNK and NF-κB p65 of lower frequency group were significantly lower (P<0.05 or P<0.01). But the expressions of Sox9 mRNA and protein were significantly higher (P< 0.05 or P<0.01). Conclusion: Vibration exercise of different frequencies may present varying degrees of cartilage repair impact in rats with early knee osteoarthritis,and the cartilage repair by low-frequency vibration training is better than that by high-frequency vibration. This can be one of the mechanisms on controlling collagen synthesis by down-regulating JNK/NF-κB expression and increasing SOX9 activity of OA articular cartilage.
Animals
;
Cartilage, Articular/metabolism*
;
MAP Kinase Kinase 4
;
Male
;
NF-kappa B/metabolism*
;
Osteoarthritis, Knee/therapy*
;
RNA, Messenger/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
SOX9 Transcription Factor
;
Vibration
8.Establishment and clinical validation of an artificial intelligence YOLOv51 model for the detection of precancerous lesions and superficial esophageal cancer in endoscopic procedure.
Shi Xu WANG ; Yan KE ; Yu Meng LIU ; Si Yao LIU ; Shi Bo SONG ; Shun HE ; Yue Ming ZHANG ; Li Zhou DOU ; Yong LIU ; Xu Dong LIU ; Hai Rui WU ; Fei Xiong SU ; Feng Ying ZHANG ; Wei ZHANG ; Gui Qi WANG
Chinese Journal of Oncology 2022;44(5):395-401
Objective: To construct the diagnostic model of superficial esophageal squamous cell carcinoma (ESCC) and precancerous lesions in endoscopic images based on the YOLOv5l model by using deep learning method of artificial intelligence to improve the diagnosis of early ESCC and precancerous lesions under endoscopy. Methods: 13, 009 endoscopic esophageal images of white light imaging (WLI), narrow band imaging (NBI) and lugol chromoendoscopy (LCE) were collected from June 2019 to July 2021 from 1, 126 patients at the Cancer Hospital, Chinese Academy of Medical Sciences, including low-grade intraepithelial neoplasia, high-grade intraepithelial neoplasia, ESCC limited to the mucosal layer, benign esophageal lesions and normal esophagus. By computerized random function method, the images were divided into a training set (11, 547 images from 1, 025 patients) and a validation set (1, 462 images from 101 patients). The YOLOv5l model was trained and constructed with the training set, and the model was validated with the validation set, while the validation set was diagnosed by two senior and two junior endoscopists, respectively, to compare the diagnostic results of YOLOv5l model and those of the endoscopists. Results: In the validation set, the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the YOLOv5l model in diagnosing early ESCC and precancerous lesions in the WLI, NBI and LCE modes were 96.9%, 87.9%, 98.3%, 88.8%, 98.1%, and 98.6%, 89.3%, 99.5%, 94.4%, 98.2%, and 93.0%, 77.5%, 98.0%, 92.6%, 93.1%, respectively. The accuracy in the NBI model was higher than that in the WLI model (P<0.05) and lower than that in the LCE model (P<0.05). The diagnostic accuracies of YOLOv5l model in the WLI, NBI and LCE modes for the early ESCC and precancerous lesions were similar to those of the 2 senior endoscopists (96.9%, 98.8%, 94.3%, and 97.5%, 99.6%, 91.9%, respectively; P>0.05), but significantly higher than those of the 2 junior endoscopists (84.7%, 92.9%, 81.6% and 88.3%, 91.9%, 81.2%, respectively; P<0.05). Conclusion: The constructed YOLOv5l model has high accuracy in diagnosing early ESCC and precancerous lesions in endoscopic WLI, NBI and LCE modes, which can assist junior endoscopists to improve diagnosis and reduce missed diagnoses.
Artificial Intelligence
;
Endoscopy/methods*
;
Esophageal Neoplasms/pathology*
;
Esophageal Squamous Cell Carcinoma/diagnostic imaging*
;
Humans
;
Narrow Band Imaging
;
Precancerous Conditions/diagnostic imaging*
;
Sensitivity and Specificity
10.Impact of different obesity patterns on coronary microvascular function in male patients with non-obstructive coronary artery disease.
Ruo Nan WANG ; Ping WU ; Fei YAO ; Shi Hao HUANGFU ; Jun ZHANG ; Chu Xin ZHANG ; Li LI ; Hai Tao ZHOU ; Qi Ting SUN ; Rui YAN ; Zhi Fang WU ; Min Fu YANG ; Yue Tao WANG ; Si Jin LI
Chinese Journal of Cardiology 2022;50(11):1080-1086
Objective: This study sought to investigate the impact of different obesity patterns on coronary microvascular function in male patients with non-obstructive coronary artery disease. Methods: We retrospectively analyzed clinical data of male patients diagnosed with suspected coronary microvascular dysfunction (CMD) in the First Hospital of Shanxi Medical University between December 2015 and August 2021. All patients underwent the one-day rest and stress 13N-ammonia positron emission tomography myocardial perfusion imaging. Overall obesity was defined by body mass index (BMI) ≥28 kg/m2 and abdominal obesity was defined by waist circumference ≥90 cm. Hyperemic myocardial blood flow (MBF)<2.3 ml·min-1·g-1 or coronary flow reserve (CFR)<2.5 were referred as CMD. All patients were grouped based on their BMI and waist circumference. MBF, CFR, the incidence of CMD, hemodynamic parameters, and cardiac function were compared among the groups. Results: A total of 136 patients were included. According to BMI and waist circumference, patients were categorized into 3 groups: control group (n=45), simple abdominal obesity group (n=53) and compound obesity group (n=38). Resting MBF did not differ between groups (F=0.02,P=0.994). Compared with the control group, hyperemic MBF was significantly lower in the simple abdominal obesity and compound obesity groups ((2.82±0.64) ml·min-1·g-1, (2.44±0.85) ml·min-1·g-1 and (2.49±0.71) ml·min-1·g-1, both P<0.05, respectively). Hyperemic MBF was comparable among the groups of patients with obesity (P=0.772). CFR was significantly lower in the simle abdominal obesity group compared with the control group (2.87±0.99 vs. 3.32±0.62,P=0.012). Compared with the control group, CFR tended to be lower in the compound obesity group (3.02±0.91 vs. 3.32±0.62,P=0.117). The incidence of CMD was significantly higher in both the simple abdominal obesity and compound obesity groups than in the control group (62.3%, 52.6% vs. 22.2%, both P<0.01, respectively). Waist circumference was an independent risk factor for male CMD (OR=1.057, 95%CI: 1.013-1.103, P=0.011). Conclusions: In male patients with non-obstructive coronary artery disease, abdominal obesity is associated with decreased coronary microvascular function. Male patients with simple abdominal obesity face the highest risk of CMD.
Humans
;
Male
;
Coronary Artery Disease
;
Coronary Circulation/physiology*
;
Obesity, Abdominal
;
Retrospective Studies
;
Obesity/epidemiology*
;
Hyperemia

Result Analysis
Print
Save
E-mail