1.Single-Cell Mapping of Brain Myeloid Cell Subsets Reveals Key Transcriptomic Changes Favoring Neuroplasticity after Ischemic Stroke.
Fangxi LIU ; Xi CHENG ; Chuansheng ZHAO ; Xiaoqian ZHANG ; Chang LIU ; Shanshan ZHONG ; Zhouyang LIU ; Xinyu LIN ; Wei QIU ; Xiuchun ZHANG
Neuroscience Bulletin 2024;40(1):65-78
Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.
Humans
;
Ischemic Stroke
;
Brain/metabolism*
;
Macrophages
;
Brain Ischemia/metabolism*
;
Microglia/metabolism*
;
Gene Expression Profiling
;
Anti-Inflammatory Agents
;
Neuronal Plasticity/physiology*
;
Infarction/metabolism*
2.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma.
Zheqi LIU ; Zhen ZHANG ; Yu ZHANG ; Wenkai ZHOU ; Xu ZHANG ; Canbang PENG ; Tong JI ; Xin ZOU ; Zhiyuan ZHANG ; Zhenhu REN
International Journal of Oral Science 2024;16(1):9-9
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic environment. To clarify the relationship between different metabolic regions and the tumor immune microenvironment (TME) in OSCC, Single cell (SC) and spatial transcriptomics (ST) sequencing of OSCC tissues were performed. The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data. The metabolic activity of each spot was calculated using scMetabolism, and k-means clustering was used to classify all spots into hyper-, normal-, or hypometabolic regions. CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others. Through CellPhoneDB and NicheNet cell-cell communication analysis, it was found that in the hypermetabolic region, fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts (iCAFs), and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12. The secretion of CXCL12 recruits regulatory T cells (Tregs), leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment. This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC, ST and TCGA bulk data, and highlights potential targets for therapy.
Humans
;
Carcinoma, Squamous Cell/metabolism*
;
Squamous Cell Carcinoma of Head and Neck
;
Mouth Neoplasms/metabolism*
;
Immunosuppression Therapy
;
Transforming Growth Factor beta
;
Head and Neck Neoplasms
;
Gene Expression Profiling
;
Tumor Microenvironment
3.Characterization of candidate factors associated with the metastasis and progression of high-grade serous ovarian cancer.
Huiping LIU ; Ling ZHOU ; Hongyan CHENG ; Shang WANG ; Wenqing LUAN ; E CAI ; Xue YE ; Honglan ZHU ; Heng CUI ; Yi LI ; Xiaohong CHANG
Chinese Medical Journal 2023;136(24):2974-2982
BACKGROUND:
High-grade serous ovarian cancer (HGSOC) is the biggest cause of gynecological cancer-related mortality because of its extremely metastatic nature. This study aimed to explore and evaluate the characteristics of candidate factors associated with the metastasis and progression of HGSOC.
METHODS:
Transcriptomic data of HGSOC patients' samples collected from primary tumors and matched omental metastatic tumors were obtained from three independent studies in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were selected to evaluate the effects on the prognosis and progression of ovarian cancer using data from The Cancer Genome Atlas (TCGA) database. Hub genes' immune landscapes were estimated by the Tumor Immune Estimation Resource (TIMER) database. Finally, using 25 HGSOC patients' cancer tissues and 10 normal fallopian tube tissues, immunohistochemistry (IHC) was performed to quantify the expression levels of hub genes associated with International Federation of Gynecology and Obstetrics (FIGO) stages.
RESULTS:
Fourteen DEGs, ADIPOQ , ALPK2 , BARX1 , CD37 , CNR2 , COL5A3 , FABP4 , FAP , GPR68 , ITGBL1 , MOXD1 , PODNL1 , SFRP2 , and TRAF3IP3 , were upregulated in metastatic tumors in every database while CADPS , GATA4 , STAR , and TSPAN8 were downregulated. ALPK2 , FAP , SFRP2 , GATA4 , STAR , and TSPAN8 were selected as hub genes significantly associated with survival and recurrence. All hub genes were correlated with tumor microenvironment infiltration, especially cancer-associated fibroblasts and natural killer (NK) cells. Furthermore, the expression of FAP and SFRP2 was positively correlated with the International Federation of Gynecology and Obstetrics (FIGO) stage, and their increased protein expression levels in metastatic samples compared with primary tumor samples and normal tissues were confirmed by IHC ( P = 0.0002 and P = 0.0001, respectively).
CONCLUSIONS
This study describes screening for DEGs in HGSOC primary tumors and matched metastasis tumors using integrated bioinformatics analyses. We identified six hub genes that were correlated with the progression of HGSOC, particularly FAP and SFRP2 , which might provide effective targets to predict prognosis and provide novel insights into individual therapeutic strategies for HGSOC.
Humans
;
Female
;
Ovarian Neoplasms/pathology*
;
Prognosis
;
Gene Expression Profiling
;
Transcriptome
;
Tumor Microenvironment
;
Receptors, G-Protein-Coupled/therapeutic use*
;
Tetraspanins/genetics*
;
Protein Kinases
;
Integrin beta1/therapeutic use*
4.Exploratory research on the probable shared molecular mechanism and transcription factors between chronic periodontitis and chronic obstructive pulmonary disease.
Chen ZHANG ; Zhenzhen HOU ; Yingrui ZONG
West China Journal of Stomatology 2023;41(5):533-540
OBJECTIVES:
To investigate possible cross-talk genes, associated pathways, and transcription factors between chronic periodontitis (CP) and chronic obstructive pulmonary disease (COPD).
METHODS:
The gene expression profiles of CP (GSE10334 and GSE16134) and COPD (GSE76925) were downloaded from the GEO database. Differential expression and functional clustering analyses were performed. The protein‑protein interaction (PPI) network was constructed. The core cross-talk genes were filtered using four topological analysis algorithms and modular segmentation. Then, functional clustering analysis was performed again.
RESULTS:
GSE10334 detected 164 differentially expressed genes (DEGs) (119 upregulated and 45 downregulated). GSE16134 identified 208 DEGs (154 upregulated and 54 downregulated). GSE76925 identified 1 408 DEGs (557 upregulated and 851 downregulated). The PPI network included 21 nodes and 20 edges. The final screening included seven cross-talk genes: CD79A, FCRLA, CD19, IRF4, CD27, SELL, and CXCL13. Relevant pathways included primary immunodeficiency, the B-cell receptor signaling pathway, and cytokine-cytokine receptor interaction.
CONCLUSIONS
This study indicates the probability of shared pathophysiology between CP and COPD, and their cross-talk genes, associated pathways, and transcription factors may offer novel concepts for future mechanistic investigations.
Humans
;
Chronic Periodontitis/genetics*
;
Gene Regulatory Networks
;
Gene Expression Profiling
;
Protein Interaction Maps/genetics*
;
Pulmonary Disease, Chronic Obstructive/genetics*
5.Genome-wide identification of the BmAKR gene family in the silkworm (Bombyx mori) and their expression analysis in diapause eggs and nondiapause eggs.
Jing GONG ; Wei ZHANG ; Qinglang WANG ; Zijian ZHU ; Jiaxin PANG ; Yong HOU
Chinese Journal of Biotechnology 2023;39(12):4982-4995
The aldo-keto reductase super family (AKRs) has a wide range of substrate specificity. However, the systematic identification of insect AKR gene family members has not been reported. In this study, bioinformatics methods were used to predict the phylogenetic evolution, physical and chemical properties, chromosome location, conserved motifs, and gene structure of AKR family members in Bombyx mori (BmAKR). Transcriptome data or quantitative real time polymerase chain reaction (qRT-PCR) were used to analyze the expression level of BmAKR genes during different organizational periods and silkworm eggs in different developmental states. Moreover, Western blotting was used to detect the expression level of the BmAKR in silkworm eggs. The results showed that 11 BmAKR genes were identified. These genes were distributed on 4 chromosomes of the silkworm genome, all of which had the (α/β) 8-barrel motif, and their physical and chemical characteristics were relatively similar. Phylogenetic analysis showed that the BmAKR genes could be divided into 2 subgroups (AKR1 and AKR2). Transcriptome data analysis showed that the expression of BmAKR genes were quite different in different tissues and periods. Moreover, the expression analysis of BmAKR genes in silkworm eggs showed that some genes were expressed significantly higher in nondiapause eggs than in diapause eggs; but another gene, BmAKR1-1, was expressed significantly higher in diapause eggs than in nondiapause eggs. The detection of protein level found that the difference trend of BmAKR1-1 in diapause eggs and non-diapause eggs was consistent with the results of qRT-PCR. In conclusion, BmAKR1-1 was screened out as candidates through the identification and analysis of the BmAKR genes in silkworm, which may regulate silkworm egg development is worthy of further investigation.
Animals
;
Bombyx/metabolism*
;
Phylogeny
;
Diapause
;
Genes, Insect
;
Gene Expression Profiling
;
Insect Proteins/metabolism*
6.Genome-wide identification of bZIP family genes and screening of candidate AarbZIPs involved in terpenoid biosynthesis in Artemisia argyi.
Bo-Han CHENG ; Meng-Yue WANG ; Lan WU ; Ran-Ran GAO ; Qing-Gang YIN ; Yu-Hua SHI ; Li XIANG
China Journal of Chinese Materia Medica 2023;48(19):5181-5194
Artemisia argyi is an important medicinal and economic plant in China, with the effects of warming channels, dispersing cold, and relieving pain, inflammation, and allergy. The essential oil of this plant is rich in volatile terpenoids and widely used in moxi-bustion and healthcare products, with huge market potential. The bZIP transcription factors compose a large family in plants and are involved in the regulation of plant growth and development, stress response, and biosynthesis of secondary metabolites such as terpenoids. However, little is known about the bZIPs and their roles in A. argyi. In this study, the bZIP transcription factors in the genome of A. argyi were systematically identified, and their physicochemical properties, phylogenetic relationship, conserved motifs, and promoter-binding elements were analyzed. Candidate AarbZIP genes involved in terpenoid biosynthesis were screened out. The results showed that a total of 156 AarbZIP transcription factors were identified at the genomic level, with the lengths of 99-618 aa, the molecular weights of 11.7-67.8 kDa, and the theoretical isoelectric points of 4.56-10.16. According to the classification of bZIPs in Arabidopsis thaliana, the 156 AarbZIPs were classified into 12 subfamilies, and the members in the same subfamily had similar conserved motifs. The cis-acting elements of promoters showed that AarbZIP genes were possibly involved in light and hormonal pathways. Five AarbZIP genes that may be involved in the regulation of terpenoid biosynthesis were screened out by homologous alignment and phylogenetic analysis. The qRT-PCR results showed that the expression levels of the five AarbZIP genes varied significantly in different tissues of A. argyi. Specifically, AarbZIP29 and AarbZIP55 were highly expressed in the leaves and AarbZIP81, AarbZIP130, and AarbZIP150 in the flower buds. This study lays a foundation for the functional study of bZIP genes and their regulatory roles in the terpenoid biosynthesis in A. argyi.
Gene Expression Profiling
;
Phylogeny
;
Artemisia/genetics*
;
Basic-Leucine Zipper Transcription Factors/metabolism*
;
Terpenes
;
Gene Expression Regulation, Plant
7.Selection and validation of reference genes for quantitative real-time PCR analysis in Paeonia veitchii.
Meng-Ting LUO ; Jun-Zhang QUBIE ; Ming-Kang FENG ; A-Xiang QUBIE ; Bin HE ; Yue-Bu HAILAI ; Wen-Bing LI ; Zheng-Ming YANG ; Ying LI ; Xin-Jia YAN ; Yuan LIU ; Shao-Shan ZHANG
China Journal of Chinese Materia Medica 2023;48(21):5759-5766
Paeonia veitchii and P. lactiflora are both original plants of the famous Chinese medicinal drug Paeoniae Radix Rubra in the Chinese Pharmacopoeia. They have important medicinal value and great potential in the flower market. The selection of stable and reliable reference genes is a necessary prerequisite for molecular research on P. veitchii. In this study, two reference genes, Actin and GAPDH, were selected as candidate genes from the transcriptome data of P. veitchii. The expression levels of the two candidate genes in different tissues(phloem, xylem, stem, leaf, petiole, and ovary) and different growth stages(bud stage, flowering stage, and dormant stage) of P. veitchii were detected using real-time fluorescence quantitative technology(qRT-PCR). Then, the stability of the expression of the two reference genes was comprehensively analyzed using geNorm, NormFinder, BestKeeper, ΔCT, and RefFinder. The results showed that the expression patterns of Actin and GAPDH were stable in different tissues and growth stages of P. veitchii. Furthermore, the expression levels of eight genes(Pv-TPS01, Pv-TPS02, Pv-CYP01, Pv-CYP02, Pv-CYP03, Pv-BAHD01, Pv-UGT01, and Pv-UGT02) in different tissues were further detected based on the transcriptome data of P. veitchii. The results showed that when Actin and GAPDH were used as reference genes, the expression trends of the eight genes in different tissues of P. veitchii were consistent, validating the reliability of Actin and GAPDH as reference genes for P. veitchii. In conclusion, this study finds that Actin and GAPDH can be used as reference genes for studying gene expression levels in different tissues and growth stages of P. veitchii.
Real-Time Polymerase Chain Reaction/methods*
;
Paeonia/genetics*
;
Actins/genetics*
;
Reproducibility of Results
;
Transcriptome
;
Glyceraldehyde-3-Phosphate Dehydrogenases/genetics*
;
Reference Standards
;
Gene Expression Profiling/methods*
8.Transcriptional regulation mechanism of differential accumulation of flavonoids in leaves and roots of Sarcandra glabra based on metabonomics and transcriptomics.
Di WU ; Yan-Yan ZHANG ; Nan LIN ; Ye LI ; Jia-Yuan ZHANG ; Yi-Cong WEI
China Journal of Chinese Materia Medica 2023;48(21):5767-5778
This study aims to explore the molecular regulation mechanism of the differential accumulation of flavonoids in the leaves and roots of Sarcandra glabra. Liquid chromatography-mass spectrometry(LC-MS) and high-throughput transcriptome sequencing(RNA-seq) were employed to screen out the flavonoid-related differential metabolites and differentially expressed genes(DEGs) encoding key metabolic enzymes. Eight DEGs were randomly selected for qRT-PCR verification. The results showed that a total of 37 flavonoid-related differential metabolites between the leaves and roots of S. glabra were obtained, including pinocembrin, phlorizin, na-ringenin, kaempferol, leucocyanidin, and 5-O-caffeoylshikimic acid. The transcriptome analysis predicted 36 DEGs associated with flavonoids in the leaves and roots of S. glabra, including 2 genes in the PAL pathway, 3 genes in the 4CL pathway, 2 genes in the CHS pathway, 4 genes in the CHI pathway, 2 genes in the FLS pathway, 1 gene in the DFR pathway, 1 gene in the CYP73A pathway, 1 gene in the CYP75B1 pathway, 3 genes in the PGT1 pathway, 6 genes in the HCT pathway, 2 genes in the C3'H pathway, 1 gene in the CCOAOMT pathway, 1 gene in the ANR pathway, 1 gene in the LAR pathway, 2 genes in the 3AT pathway, 1 gene in the BZ1 pathway, 2 genes in the IFTM7 pathway, and 1 gene in the CYP81E9 pathway. Six transcription factors, including C2H2, bHLH, and bZIP, were involved in regulating the differential accumulation of flavonoids in the leaves and roots of S. glabra. The qRT-PCR results showed that the up-or down-regulated expression of the 8 randomly selected enzyme genes involved in flavonoid synthesis in the leaves and roots of S. glabra was consistent with the transcriptome sequencing results. This study preliminarily analyzed the transcriptional regulation mechanism of differential accumulation of flavonoids in the leaves and roots of S. glabra, laying a foundation for further elucidating the regulatory effects of key enzyme genes and corresponding transcription factors on the accumulation of flavonoids in S. glabra.
Metabolome
;
Gene Expression Regulation, Plant
;
Flavonoids
;
Gene Expression Profiling
;
Transcriptome
;
Transcription Factors/metabolism*
9.Screening and expression analysis of transcription factors involved in genuineness of Codonopsis pilosula in Shanxi.
Yu-Jia ZHAI ; Jun-Li DAI ; Xing LIU ; Xing-Rui TIAN ; Jiao-Jiao JI ; Jian-Ping GAO
China Journal of Chinese Materia Medica 2023;48(21):5779-5789
This study aims to mine the transcription factors that affect the genuineness of Codonopsis pilosula in Shanxi based on the transcriptome data of C. pilosula samples collected from Shanxi and Gansu, and then analyze the gene expression patterns, which will provide a theoretical basis for the molecular assisted breeding of C. pilosula. Gene ontology(GO) functional annotation, conserved motif prediction, and gene expression pattern analysis were performed for the differential transcription factors predicted based on the transcriptome data of C. pilosula from different habitats. A total of 61 differentially expressed genes(DEGs) were screened out from the transcriptome data. Most of the DEGs belonged to AP2/ERF-ERF family, with the conserved motif of [2X]-[LG]-[3X]-T-[3X]-[AARAYDRAA]-[3X]-[RG]-[2X]-A-[2X]-[NFP]. Forty-three of the DEGs showed significantly higher gene expression in C. pilosula samples from Shanxi than in the samples from Gansu, including 11 genes in the AP2/ERF-ERF family, 5 genes in the NAC fa-mily, 1 gene in the bHLH family, and 2 genes in the RWP-RK family, while 18 transcription factors showed higher expression levels in the samples from Gansu. GO annotation predicted that most of the DEGs were enriched in GO terms related to transcriptional binding activity(103), metabolic process(26), and stress response(23). The expression of transcription factor genes, CpNAC92, CpNAC100, CpbHLH128, and CpRAP2-7 was higher in the samples from Shanxi and in the roots of C. pilosula. CpNAC92, CpbHLH128, and CpRAP2-7 responded to the low temperature, temperature difference, and iron stresses, while CpNAC100 only responded to low temperature and iron stresses. The screening and expression analysis of the specific transcription factors CpNAC92, CpNAC100, CpbHLH128, and CpRAP2-7 in C. pilosula in Shanxi laid a theoretical foundation for further research on the mechanism of genuineness formation of C. pilosula.
Codonopsis/chemistry*
;
Transcription Factors/genetics*
;
Gene Expression Profiling
;
Transcriptome
;
Iron
10.Identification and validation of novel biomarkers for cold-dampness syndrome of rheumatoid arthritis based on integration of multiple bioinformatics methods.
Tao LI ; Wen-Jia CHEN ; Yan-Qiong ZHANG ; Wei LIU ; Na LIN ; Xue-Ting LIU
China Journal of Chinese Materia Medica 2023;48(24):6721-6729
This study aims to identify the novel biomarkers of cold-dampness syndrome(RA-Cold) of rheumatoid arthritis(RA) by gene set enrichment analysis(GSEA), weighted gene correlation network analysis(WGCNA), and clinical validation. Firstly, transcriptome sequencing was carried out for the whole blood samples from RA-Cold patients, RA patients with other traditional Chinese medicine(TCM) syndromes, and healthy volunteers. The differentially expressed gene(DEG) sets of RA-Cold were screened by comparison with the RA patients with other TCM syndromes and healthy volunteers. Then, GSEA and WGCNA were carried out to screen the key DEGs as candidate biomarkers for RA-Cold. Experimentally, the expression levels of the candidate biomarkers were determined by RT-qPCR for an independent clinical cohort(not less than 10 cases/group), and the clinical efficacy of the candidates was assessed using the receiver operating characteristic(ROC) curve. The results showed that 3 601 DEGs associated with RA-Cold were obtained, including 106 up-regulated genes and 3 495 down-regulated genes. The DEGs of RA-Cold were mainly enriched in the pathways associated with inflammation-immunity regulation, hormone regulation, substance and energy metabolism, cell function regulation, and synovial pannus formation. GSEA and WGCNA showed that recombinant proteasome 26S subunit, ATPase 2(PSMC2), which ranked in the top 50% in terms of coefficient of variation, representativeness of pathway, and biological modules, was a candidate biomarker of RA-Cold. Furthermore, the validation results based on the clinical independent sample set showed that the F1 value, specificity, accuracy, and precision of PSMC2 for RA-Cold were 70.3%, 61.9%, 64.5%, and 81.3%, respectively, and the area under the curve(AUC) value was 0.96. In summary, this study employed the "GSEA-WGCNA-validation" integrated strategy to identify novel biomarkers of RA-Cold, which helped to improve the TCM clinical diagnosis and treatment of core syndromes in RA and provided an experimental basis for TCM syndrome differentiation.
Humans
;
Arthritis, Rheumatoid/drug therapy*
;
Biomarkers/metabolism*
;
Medicine, Chinese Traditional
;
Gene Expression Profiling/methods*
;
Computational Biology
;
Gene Regulatory Networks
;
ATPases Associated with Diverse Cellular Activities/therapeutic use*
;
Proteasome Endopeptidase Complex/therapeutic use*

Result Analysis
Print
Save
E-mail