1.Effects of Different Modes in Hypoxic Training on Metabolic Improvements in Obese Individuals: a Systematic Review With Meta-analysis on Randomized Controlled Trail
Jie-Ping WANG ; Xiao-Shi LI ; Ru-Wen WANG ; Yi-Yin ZHANG ; Feng-Zhi YU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1587-1604
		                        		
		                        			
		                        			This paper aimed to systematically evaluate the effects of hypoxic training at different fraction of inspired oxygen (FiO2) on body composition, glucose metabolism, and lipid metabolism in obese individuals, and to determine the optimal oxygen concentration range to provide scientific evidence for personalized and precise hypoxic exercise prescriptions. A systematic search was conducted in the Cochrane Library, PubMed, Web of Science, Embase, and CNKI databases for randomized controlled trials and pre-post intervention studies published up to March 31, 2025, involving hypoxic training interventions in obese populations. Meta-analysis was performed using RevMan 5.4 software to assess the effects of different fraction of inspired oxygen (FiO2≤14% vs. FiO2>14%) on BMI, body fat percentage, waist circumference, fasting blood glucose, insulin, HOMA-IR, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), with subgroup analyses based on oxygen concentration. A total of 22 studies involving 292 participants were included. Meta-analysis showed that hypoxic training significantly reduced BMI (mean difference (MD)=-2.29,95%CI: -3.42 to -1.17, P<0.000 1), body fat percentage (MD=-2.32, 95%CI: -3.16 to -1.47, P<0.001), waist circumference (MD=-3.79, 95%CI: -6.73 to -0.85, P=0.01), fasting blood glucose (MD=-3.58, 95%CI: -6.23 to -0.93, P=0.008), insulin (MD=-1.60, 95%CI: -2.98 to -0.22, P=0.02), TG (MD=-0.18, 95%CI: -0.25 to -0.12, P<0.001), and LDL-C (MD=-0.25, 95%CI: -0.39 to -0.11, P=0.000 3). Greater improvements were observed under moderate hypoxic conditions with FiO2>14%. Changes in HOMA-IR (MD=-0.74, 95%CI: -1.52 to 0.04,P=0.06) and HDL-C (MD=-0.09, 95%CI: -0.21 to 0.02, P=0.11) were not statistically significant. Hypoxic training can significantly improve body composition, glucose metabolism, and lipid metabolism indicators in obese individuals, with greater benefits observed under moderate hypoxia (FiO>14%). As a key parameter in hypoxic exercise interventions, the precise setting of oxygen concentration is crucial for optimizing intervention outcomes. 
		                        		
		                        		
		                        		
		                        	
2.Application of a digital chylous plasma assessment device in the determination of chylous plasma
Lingyue GUO ; Caina LI ; Hongyan GAO ; Wei WEI ; Ping ZHANG ; Yan LIU ; Yajie WANG ; Weidong HE
Chinese Journal of Blood Transfusion 2025;38(9):1236-1241
		                        		
		                        			
		                        			Objective: To develop a simple digital chylous plasma device and validate its ability to accurately, standardly, and non-destructively determine chylous plasma in blood banks and clinical transfusions in hospitals. Methods: A digital chylous plasma assessment device was designed and manufactured. This device was used to measure the chylous degrees of chylous plasma samples before freezing, after freeze-thawing, before viral inactivation, and after viral inactivation. The measured chylosity index values were categorized according to the requirements specified in Appendix A of the Chinese national standard GB 18469-2001 "Quality Requirements for Whole Blood and Blood Components". This process established a digital standard for chylous plasma, enabling the identification of severe, moderate and mild chylous plasma, and non-chylous plasma. Results: The initial simple product of the digital chylous assessment device was successfully designed and manufactured. There was no significant difference in the degree of chylous plasma between pre-freezing 468.11±217.73 lux and post-thawing 538.91±273.39 lux of chylous plasma (P>0.05), or between pre-viral inactivation 858.33±387.79 lux and post-viral inactivation 928.33±166.51 lux of chylous plasma (P>0.05). The median of chylous degree values for plasma chylous index grades 0 to 6 were 45 lux, 250 lux, 620 lux, 835 lux, 1 130 lux, 1 390 lux, and 1 700 lux, respectively. The defined cutoff values/ranges for the chylous degree values corresponding to plasma chylous index grade 0 to 6 were ≤125 lux, 126-465 lux, 466-740 lux, 741-1 000 lux, 1 001-1 233 lux, 1 234-1 560 lux, and ≥1 561 lux. Conclusion: This study successfully developed the initial product of the digital chylous device and established digital standards for classifying chylous plasma. The device demonstrates the potential to meet the needs for assessment of chylous plasma in both blood banks and clinical transfusions in hospitals, thereby promoting the development and application of standardized, non-destructive chylous plasma assessment technology.
		                        		
		                        		
		                        		
		                        	
3.Chaihu and Longgu Mulitang Regulates ERK/CREB Signaling Pathway to Ameliorate Hippocampal Nerve Injury in Mouse Model of Depression
Shiyu JI ; Li WANG ; Zhuo ZHANG ; Yingzhe GAO ; Zefeng ZHANG ; Siyu CHEN ; Guangjing XIE ; Ping WANG ; Panpan HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):1-9
		                        		
		                        			
		                        			ObjectiveTo investigate the effects of Chaihu and Longgu Mulitang (CLMT) on hippocampal neural damage in the mouse model of depression via the extracellular signal-regulated protein kinase (ERK)/cAMP-response element-binding protein (CREB) signaling pathway. MethodsSeventy-eight male C57BL/6 mice were randomly allocated into normal control, model, low/medium/high-dose (2.89, 5.78, and 11.56 g·kg-1, respectively) CLMT, and paroxetine (10 mg·kg-1) groups. A depression model was established by chronic unpredictable mild stress (CUMS) combined with social isolation. Behavioral tests were carried out to evaluate depressive-like behaviors. Hematoxylin-eosin staining and Nissl staining were performed to assess hippocampal morphology and neuronal damage. Immunofluorescence was employed to detect glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba1). Real-time PCR was employed to measure the mRNA levels of ERK and CREB. Western blot was employed to determine the expression of ERK/CREB pathway proteins and brain-derived neurotrophic factor (BDNF) in the hippocampal tissue. Molecular Operating Environment (MOE) software was used for molecular docking to evaluate the interactions between CLMT components and target proteins. ResultsCompared with the normal control group, the model group showed decreased sucrose preference (P0.01), increased tail-suspension immobility time (P0.01), decreased activity in the central region of the open field test (P0.01), and decreased activity in the middle and open-arm region of the elevated plus maze test (P0.01). The hippocampal area in the model group showed wrinkled cells and a reduction in the number of cells, neurons with reduced sizes and Nissl bodies, enhanced fluorescence intensity of GFAP and Iba1 (P0.01), and down-regulated expression of phosphorylated (p)-ERK, p-CREB, and BDNF (P0.05, P0.01) and mRNA levels of ERK and CREB (P0.01). Compared with the model group, the CLMT group showed increased body weight (P0.05, P0.01), restored cell morphology, with only a small number of ruptured cells, normal neuronal structure and morphology with obvious nuclei and abundant Nissl bodies, weakened fluorescence intensity of GFAP and Iba1 (P0.05, P0.01), up-regulated mRNA levels of ERK and CREB (P0.05, P0.01) and protein levels of phosphorylated (p)-ERK, p-CREB, and BDNF in the hippocampal tissue (P0.05, P0.01). The results of molecular docking indicated that nine active ingredients in CLMT had good binding affinity with ERK and CREB. ConclusionCLMT may ameliorate the hippocampal nerve injury in the mouse model of depression by regulating the ERK/CREB pathway. 
		                        		
		                        		
		                        		
		                        	
4.Hyperoside Alleviates LPS-induced Inflammation in Zebrafish Model via TLR4/MyD88/NF-κB Pathway
Qing LAN ; Anna WANG ; Feifei ZHOU ; Keqian LIU ; Zhao LI ; Wenjing YU ; Shuyao TANG ; Ping LI ; Shaowu CHENG ; Sisi DENG ; Zhenyan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):63-72
		                        		
		                        			
		                        			ObjectiveTo investigate the intervention effects and mechanisms of the flavonoid hyperoside (Hyp) on lipopolysaccharide (LPS)-induced inflammation in the zebrafish model. MethodsZebrafish larvae were either microinjected with 0.5 g·L-1 LPS or immersed in 1 g·L-1 LPS for the modeling of inflammation. The larvae were then treated with Hyp at 25, 50, and 100 mg·L-1 through immersion for four consecutive days. The inflammatory phenotypes were assessed by analyzing the mortality rate, malformation rate, body length, and yolk sac area ratio. Behavioral tests were conducted to evaluate the inflammatory stress responses, and macrophage migration was observed by fluorescence microscopy. Additionally, the mRNA levels of inflammation-related genes, including interleukin-1β (IL-1β), interleukin-6 (IL-6), chemokine C-C motif ligand 2 (CCL2), chemokine C-X3-C motif receptor 1 (CX3CR1), chemokine C-C motif receptor 2 (CCR2), and genes associated with the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-kappa B (NF-κB) signaling pathway, were measured by Real-time quantitative polymerase chain reaction(Real-time PCR). ResultsCompared with the pure water injection group, the model group exhibited increased mortality, malformation rates and yolk sac area ratio (P0.01), reduced body length (P0.01), increased total swimming distance and high-speed swimming duration (P0.01), and up-regulated mRNA levels of TLR4, MyD88, NF-κB, IL-1β, IL-6, CCL2, CX3CR1, and CCR2 (P0.01). Hyp at low, medium and high doses, as well as aspirin, reduced the mortality and malformation rates (P0.05,P0.01), increased the body length (P0.05,P0.01), decreased the yolk sac area ratio (P0.01), reduced the high-speed swimming duration (P0.01), and down-regulated the mRNA levels of TLR4, MyD88, NF-κB, IL-1β, IL-6, CCL2, CX3CR1, and CCR2 (P0.05,P0.01) compared with the model group. ConclusionHyp may modulate the TLR4/MyD88/NF-κB pathway to ameliorate inflammatory phenotypes and alleviate stress conditions in zebrafish, thereby exerting the anti-inflammatory effect. 
		                        		
		                        		
		                        		
		                        	
5.Effect of Wulao Qisun Prescription on Proliferation and Osteogenic Differentiation of AS Fibroblasts by Regulating Wnt/β-catenin Signaling Pathway
Juanjuan YANG ; Ping CHEN ; Haidong WANG ; Zhendong WANG ; Haolin LI ; Zhimin ZHANG ; Yuping YANG ; Weigang CHENG ; Jin SU ; Jingjing SONG ; Dongsheng LU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):67-73
		                        		
		                        			
		                        			ObjectiveTo investigate the effect and underlying mechanism of the Wulao Qisun prescription on pathological new bone formation in ankylosing spondylitis (AS). MethodsSynovial fibroblasts were isolated from the hip joints of AS patients and observed under a microscope to assess cell morphology. The cells were identified using immunofluorescence staining. The isolated AS fibroblasts were divided into blank group, low drug-containing serum group, medium drug-containing serum group, high drug-containing serum group, and positive drug group. After drug intervention, cell proliferation was measured using the cell counting kit-8 (CCK-8) assay to observe fibroblast growth and determine the optimal intervention time. Alkaline phosphatase (ALP) activity was measured using the alkaline phosphatase assay. Protein expression of osteocalcin (OCN), osteopontin (OPN), and runt-related transcription factor 2 (Runx2) was detected by Western blot. The mRNA expression levels of Wnt5a, β-catenin, and Dickkopf-1 (DKK-1) were measured by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the blank group, each drug-containing serum group of Wulao Qisun prescription and the positive drug group inhibited the proliferation of AS fibroblasts and reduced ALP expression (P<0.01). Compared with the blank group, the low drug-containing serum group of Wulao Qisun prescription downregulated β-catenin mRNA expression (P<0.05). The medium and high drug-containing serum groups and the positive drug group significantly downregulated Wnt5a and β-catenin mRNA expression (P<0.05, P<0.01), with the positive drug group showing the most pronounced effect (P<0.01). The high drug-containing serum group and the positive drug group significantly upregulated DKK-1 mRNA expression (P<0.01). Compared with the blank group, the low drug-containing serum group of Wulao Qisun prescription inhibited the expression of OPN and Runx2 proteins (P<0.05, P<0.01), while the medium and high drug-containing serum groups and the positive drug group inhibited the expression of OCN, OPN, and Runx2 proteins (P<0.05, P<0.01). ConclusionThe Wulao Qisun prescription can inhibit the proliferation and osteogenic differentiation of AS fibroblasts, thereby delaying the formation of pathological new bone in AS. The possible mechanism involves the regulation of Wnt/β-catenin-related gene expression, further inhibiting the transcription of downstream target genes. 
		                        		
		                        		
		                        		
		                        	
6.Key points of ethical governance in the clinical application of new biomedical technology
Ping YUAN ; Hongjuan LI ; Xiaojing LI ; Xiuying ZHANG ; Qiongge ZHANG ; Hongyu WANG
Chinese Medical Ethics 2025;38(1):89-94
		                        		
		                        			
		                        			Given the current ethical issues such as unknown high risks in the clinical application of new biomedical technology, thus, medical institutions need to establish new technology management systems, including clarifying the concept, the assessment and admission mechanism, and ethical management systems of new technology. According to the direction of the development of new technology in the medical institution, the ethics review committee should also perfect the management system of ethics committees and the professional composition of ethics review committee members, improve the ability of ethics committee members to evaluate new biomedical technology, increase the assessment of ethical risks of new technology in the preliminary review stage, strengthen the requirements for emergency plan formulation, as well as set the frequency of the follow-up review based on the risk level of new technology. The ethics review committee should work together with the medical management department to formulate an ethical standardization training system for the clinical application of medical technology in the institution, and regularly conduct training for all staff, to promote medical workers’ understanding of the management requirements of biomedical technologies. Different types of new biomedical technology have different ethical risks. Therefore, the medical management departments and ethics review committees of medical institutions should formulate specific management rules based on the characteristics of new technology types. However, it should be noted that when new biomedical technology generally is first introduced into clinical practice, there are often issues regarding fairness and justice in the use of the technology. 
		                        		
		                        		
		                        		
		                        	
7.Brain Aperiodic Dynamics
Zhi-Cai HU ; Zhen ZHANG ; Jiang WANG ; Gui-Ping LI ; Shan LIU ; Hai-Tao YU
Progress in Biochemistry and Biophysics 2025;52(1):99-118
		                        		
		                        			
		                        			Brain’s neural activities encompass both periodic rhythmic oscillations and aperiodic neural fluctuations. Rhythmic oscillations manifest as spectral peaks of neural signals, directly reflecting the synchronized activities of neural populations and closely tied to cognitive and behavioral states. In contrast, aperiodic fluctuations exhibit a power-law decaying spectral trend, revealing the multiscale dynamics of brain neural activity. In recent years, researchers have made notable progress in studying brain aperiodic dynamics. These studies demonstrate that aperiodic activity holds significant physiological relevance, correlating with various physiological states such as external stimuli, drug induction, sleep states, and aging. Aperiodic activity serves as a reflection of the brain’s sensory capacity, consciousness level, and cognitive ability. In clinical research, the aperiodic exponent has emerged as a significant potential biomarker, capable of reflecting the progression and trends of brain diseases while being intricately intertwined with the excitation-inhibition balance of neural system. The physiological mechanisms underlying aperiodic dynamics span multiple neural scales, with activities at the levels of individual neurons, neuronal ensembles, and neural networks collectively influencing the frequency, oscillatory patterns, and spatiotemporal characteristics of aperiodic signals. Aperiodic dynamics currently boasts broad application prospects. It not only provides a novel perspective for investigating brain neural dynamics but also holds immense potential as a neural marker in neuromodulation or brain-computer interface technologies. This paper summarizes methods for extracting characteristic parameters of aperiodic activity, analyzes its physiological relevance and potential as a biomarker in brain diseases, summarizes its physiological mechanisms, and based on these findings, elaborates on the research prospects of aperiodic dynamics. 
		                        		
		                        		
		                        		
		                        	
8.Correlation of the expression levels of ANGPTL4 and SDF-1 in serum with the severity of disease in patients with diabetic macular edema
Ping LI ; Jing WU ; Jie LI ; Kai WANG
International Eye Science 2025;25(3):461-464
		                        		
		                        			
		                        			 AIM: To investigate the correlation of the expression of stromal cell-derived factor-1(SDF-1)and angiopoietin like protein 4(ANGPTL4)in serum with the severity of disease in patients with diabetic macular edema(DME).METHODS: From April 2020 to August 2023, 193 patients with diabetic retinopathy who were admitted to our hospital were prospectively separated into DME group(128 cases)(56 cases in mild group, 44 cases in moderate group, 28 cases in severe group)and non DME group(65 cases)according to whether the patients had macular edema and the severity of disease. Enzyme-linked immunosorbent assay(ELISA)was applied to determine the levels of ANGPTL4 and SDF-1 in serum. Multivariate Logistic regression was applied to analyze the factors that affected the severity of DME; receiver operating characteristic(ROC)curve was applied to analyze the diagnostic value of ANGPTL4 and SDF-1 levels in serum of DME patients for the severity of DME.RESULTS: The levels of ANGPTL4 and SDF-1 in serum of the DME group were obviously higher than those of the non DME group(P<0.01); the expression levels of ANGPTL4 and SDF-1 in serum of the mild, moderate, and severe groups increased obviously in sequence(P<0.05); multivariate Logistic regression analysis showed that the levels of ANGPTL4 and SDF-1 in serum were risk factors affecting the severity of DME(P<0.01); The area under the curve(AUC)of serum SDF-1 in the diagnosis of DME severity was 0.772(95%CI: 0.690-0.842), and the AUC of ANGPTL4 in the diagnosis of DME severity was 0.801(95%CI: 0.722-0.867). The AUC of ANGPTL4 combined with SDF-1 in the diagnosis of DME was 0.884(95%CI: 0.816-0.934), the sensitivity was 87.50%, and the specificity was 85.71%, which were significantly higher than ANGPTL4 or SDF-1 alone(Z=2.658, 2.469, all P<0.05).CONCLUSION: The levels of ANGPTL4 and SDF-1 in serum of DME patients are significantly increased, and their levels increase with the severity of the disease. They can be used as auxiliary indicators for diagnosing the severity of DME disease, and the combined diagnosis has a better effect. 
		                        		
		                        		
		                        		
		                        	
9.Correlation of the expression levels of ANGPTL4 and SDF-1 in serum with the severity of disease in patients with diabetic macular edema
Ping LI ; Jing WU ; Jie LI ; Kai WANG
International Eye Science 2025;25(3):461-464
		                        		
		                        			
		                        			 AIM: To investigate the correlation of the expression of stromal cell-derived factor-1(SDF-1)and angiopoietin like protein 4(ANGPTL4)in serum with the severity of disease in patients with diabetic macular edema(DME).METHODS: From April 2020 to August 2023, 193 patients with diabetic retinopathy who were admitted to our hospital were prospectively separated into DME group(128 cases)(56 cases in mild group, 44 cases in moderate group, 28 cases in severe group)and non DME group(65 cases)according to whether the patients had macular edema and the severity of disease. Enzyme-linked immunosorbent assay(ELISA)was applied to determine the levels of ANGPTL4 and SDF-1 in serum. Multivariate Logistic regression was applied to analyze the factors that affected the severity of DME; receiver operating characteristic(ROC)curve was applied to analyze the diagnostic value of ANGPTL4 and SDF-1 levels in serum of DME patients for the severity of DME.RESULTS: The levels of ANGPTL4 and SDF-1 in serum of the DME group were obviously higher than those of the non DME group(P<0.01); the expression levels of ANGPTL4 and SDF-1 in serum of the mild, moderate, and severe groups increased obviously in sequence(P<0.05); multivariate Logistic regression analysis showed that the levels of ANGPTL4 and SDF-1 in serum were risk factors affecting the severity of DME(P<0.01); The area under the curve(AUC)of serum SDF-1 in the diagnosis of DME severity was 0.772(95%CI: 0.690-0.842), and the AUC of ANGPTL4 in the diagnosis of DME severity was 0.801(95%CI: 0.722-0.867). The AUC of ANGPTL4 combined with SDF-1 in the diagnosis of DME was 0.884(95%CI: 0.816-0.934), the sensitivity was 87.50%, and the specificity was 85.71%, which were significantly higher than ANGPTL4 or SDF-1 alone(Z=2.658, 2.469, all P<0.05).CONCLUSION: The levels of ANGPTL4 and SDF-1 in serum of DME patients are significantly increased, and their levels increase with the severity of the disease. They can be used as auxiliary indicators for diagnosing the severity of DME disease, and the combined diagnosis has a better effect. 
		                        		
		                        		
		                        		
		                        	
10.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
		                        		
		                        			
		                        			Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail