1.Dynamics of eosinophil infiltration and microglia activation in brain tissues of mice infected with Angiostrongylus cantonensis
Fanna WEI ; Renjie ZHANG ; Yahong HU ; Xiaoyu QIN ; Yunhai GUO ; Xiaojin MO ; Yan LU ; Jiahui SUN ; Yan ZHOU ; Jiatian GUO ; Peng SONG ; Yanhong CHU ; Bin XU ; Ting ZHANG ; Yuchun CAI ; Muxin CHEN
Chinese Journal of Schistosomiasis Control 2025;37(2):163-175
Objective To investigate the changes in eosinophil counts and the activation of microglial cells in the brain tissues of mice at different stages of Angiostrongylus cantonensis infection, and to examine the role of microglia in regulating the progression of angiostrongyliasis and unravel the possible molecular mechanisms. Methods Fifty BALB/c mice were randomly divided into the control group and the 7-d, 14-d, 21-day and 25-d infection groups, of 10 mice in each group. All mice in infection groups were infected with 30 stage III A. cantonensis larvae by gavage, and animals in the control group was given an equal amount of physiological saline. Five mice were collected from each of infection groups on days 7, 14, 21 d and 25 d post-infection, and 5 mice were collected from the control group on the day of oral gavage. The general and focal functional impairment was scored using the Clark scoring method to assess the degree of mouse neurological impairment. Five mice from each of infection groups were sacrificed on days 7, 14, 21 d and 25 d post-infection, and 5 mice from the control group were sacrificed on the day of oral gavage. Mouse brain tissues were sampled, and the pathological changes of brain tissues were dynamically observed using hematoxylin and eosin (HE) staining. Immunofluorescence staining with eosinophilic cationic protein (ECP) and ionized calcium binding adaptor molecule 1 (Iba1) was used to assess the degree of eosinophil infiltration and the counts of microglial cells in mouse brain tissues in each group, and the morphological parameters of microglial cells (skeleton analysis and fractal analysis) were quantified by using Image J software to determine the morphological changes of microglial cells. In addition, the expression of M1 microglia markers Fcγ receptor III (Fcgr3), Fcγ receptor IIb (Fcgr2b) and CD86 antigen (Cd86), M2 microglia markers Arginase 1 (Arg1), macrophage mannose receptor C-type 1 (Mrc1), chitinase-like 3 (Chil3), and phagocytosis genes myeloid cell triggering receptor expressed on myeloid cells 2 (Trem2), CD68 antigen (Cd68), and apolipoprotein E (Apoe) was quantified using real-time quantitative reverse transcription PCR (RT-qPCR) assay in the mouse cerebral cortex of mice post-infection. Results A large number of A. cantonensis larvae were seen on the mouse meninges surface post-infection, and many neuronal nuclei were crumpled and deeply stained, with a large number of bleeding points in the meninges. The median Clark scores of mouse general functional impairment were 0 (interquartile range, 0), 0 (interquartile range, 0.5), 6 (interquartile range, 1.0), 14 (interquartile range, 8.5) points and 20 (interquartile range, 9.0) points in the control group and the 7-d, 14-d, 21-d and 25-d groups, respectively (H = 22.45, P < 0.01), and the median Clark scores of mouse focal functional impairment were 0 (interquartile range, 0), 2 (interquartile range, 2.5), 7 (interquartile range, 3.0), 18 (interquartile range, 5.0) points and 25 (interquartile range, 6.5) points in the control group and the 7-d, 14-d, 21-d and 25-d groups, respectively (H = 22.72, P < 0.01). The mean scores of mice general and focal functional impairment were all higher in the infection groups than in the control group (all P values < 0.05). Immunofluorescence staining showed a significant difference in the eosinophil counts in mouse brain tissues among the five groups (F = 40.05, P < 0.000 1), and the eosinophil counts were significantly higher in mouse brain tissues in the 14-d (3.08 ± 0.78) and 21-d infection groups (5.97 ± 1.37) than in the control group (1.00 ± 0.28) (both P values < 0.05). Semi-quantitative analysis of microglia immunofluorescence showed a significant difference in the counts of microglial cells among the five groups (F = 17.66, P < 0.000 1), and higher Iba1 levels were detected in mouse brain tissues in 14-d (5.75 ± 1.28), 21-d (6.23 ± 1.89) and 25-d infection groups (3.70 ± 1.30) than in the control group (1.00 ± 0.30) (all P values < 0.05). Skeleton and fractal analyses showed that the branch length [(162.04 ± 34.10) μm vs. (395.37 ± 64.11) μm; t = 5.566, P < 0.05] and fractal dimension of microglial cells (1.30 ± 0.01 vs. 1.41 ± 0.03; t = 5.266, P < 0.05) were reduced in mouse brain tissues in the 21-d infection group relative to the control group. In addition, there were significant differences among the 5 groups in terms of M1 and M2 microglia markers Fcgr3 (F = 48.34, P < 0.05), Fcgr2b (F = 55.46, P < 0.05), Cd86 (F = 24.44, P < 0.05), Arg1 (F = 31.18, P < 0.05), Mrc1 (F = 15.42, P < 0.05) and Chil3 (F = 24.41, P < 0.05), as well as phagocytosis markers Trem2 (F = 21.19, P < 0.05), Cd68 (F = 43.95, P < 0.05) and Apoe (F = 7.12, P < 0.05) in mice brain tissues. Conclusions A. cantonensis infections may induce severe pathological injuries in mouse brain tissues that are characterized by massive eosinophil infiltration and persistent activation of microglia cells, thereby resulting in progressive deterioration of neurological functions.
2.Correspondence to letter to the editor on “Genomic biomarkers to predict response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma: Insights from the IMbrave150 trial”
Sung Hwan LEE ; Sun Young YIM ; Ji Hoon KIM ; Sunyoung S LEE ; Ahmed O KASEB ; Peng WEI ; Ju-Seog LEE
Clinical and Molecular Hepatology 2025;31(1):e110-e112
3.Correspondence to letter to the editor on “Genomic biomarkers to predict response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma: Insights from the IMbrave150 trial”
Sung Hwan LEE ; Sun Young YIM ; Ji Hoon KIM ; Sunyoung S LEE ; Ahmed O KASEB ; Peng WEI ; Ju-Seog LEE
Clinical and Molecular Hepatology 2025;31(1):e110-e112
4.Correspondence to letter to the editor on “Genomic biomarkers to predict response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma: Insights from the IMbrave150 trial”
Sung Hwan LEE ; Sun Young YIM ; Ji Hoon KIM ; Sunyoung S LEE ; Ahmed O KASEB ; Peng WEI ; Ju-Seog LEE
Clinical and Molecular Hepatology 2025;31(1):e110-e112
5.Application prospects of organoid-on-chips technology in xenotransplantation
Xilong LIN ; Yu WANG ; Jiang PENG ; Hongjiang WEI ; Shengkun SUN
Organ Transplantation 2025;16(4):502-508
Xenotransplantation is an important approach to addressing the shortage of donor organs. However, it still faces numerous challenges, such as acute rejection and zoonotic diseases. Organoid-on-a-chip technology refers to a microcell culture device that simulates the physiological functions of human organs in vitro. In recent years, it has achieved a series of important results in the field of allotransplantation and has great application prospects in the field of xenotransplantation, bringing new opportunities for xenotransplantation research. Therefore, this article discusses the current research status and progress of organoid-on-a-chip technology, combined with the various problems faced by xenotransplantation, to explore the application of organoid-on-a-chip technology in solving the selection of immunosuppressive regimens, matching and viral reactivation in xenotransplantation. This aims to open up new avenues for solving the current problems in the field of xenotransplantation and promote its further development.
6.Clinical and Mechanistic Study of Modified Sinisan in Treating Precancerous Lesions of Digestive System Based on "Inflammation-to-Cancer Transformation"
Xuhang SUN ; Dandan WEI ; Xin PENG ; Shanshan LI ; Yihan ZHAO ; Fuke YAO ; Shiqing JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):221-234
Tumorigenesis, invasion, and metastasis occur in the context of a persistent inflammatory microenvironment, and a variety of inflammatory factors can lead to the development of various tumors. Guided by the thought of "preventive treatment of disease" in TCM and the concept of tertiary prevention in modern medicine, it is of great significance to effectively intervene in the inflammatory stage of the disease, interrupt disease progression, prevent the occurrence of malignant tumors, and reverse the process of "inflammation-to-cancer transformation". Sinisan, a commonly used prescription in the Treatise on Febrile Diseases, has been widely applied in the treatment of precancerous lesions of the digestive system, demonstrating considerable advantages. This article reviewed literature from the past 20 years, summarizing the application of Sinisan in precancerous lesions of the digestive system from three aspects: the exploration of its prescription-syndrome relationship, clinical application, and mechanistic study. It is found that basic syndrome indications of Sinisan include harmonizing the Earth element to promote spleen-stomach transportation and transformation, soothing the liver and nourishing the Wood element to restore the smooth flow of Qi, and regulating Yin and Yang to relieve stagnation within the system. In clinical application, Sinisan has shown significant efficacy in atrophic gastritis and precancerous conditions such as intestinal metaplasia, gastric ulcer, ulcerative colitis, esophagitis, and pancreatitis. Mechanistic studies have revealed that Sinisan can inhibit inflammatory factors and improve the inflammatory microenvironment, inhibit cell proliferation and regulate apoptosis, exhibit anti-angiogenic and antitumorigenic effects, modulate immune function, and exert antioxidant effects. These mechanisms can be achieved by regulating pathways such as nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1), farnesoid X receptor (FXR)/Nrf2, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), Takeda G protein-coupled receptor 5/cyclic adenosine monophosphate/protein kinase A (TGR5/cAMP/PKA), interleukin-4/signal transducer and activator of transcription 6 (IL-4/STAT6), Janus kinase/signal transducer and activator of transcription (JAK/STAT), RhoA/Rho-associated protein kinase (RhoA/ROCK), and transforming growth factor-β/Smad proteins (TGF-β/Smads), confirming Sinisan's role in reversing the inflammation-to-cancer transformation. The current research status of Sinisan in precancerous lesions of the digestive system was thoroughly examined through the above three aspects, along with the identification of limitations and areas for improvement in current research. The aim is to provide a basis and support for future in-depth research on Sinisan, promote the development of new integrated treatment models combining TCM and Western medicine for precancerous lesions, and aid in the research and development of drugs related to precancerous lesions.
7.Application of xenotransplantation in clinical practice
Shengkun SUN ; Shujun YANG ; Hao WEI ; Haihong YANG ; Jing LU ; Jiang PENG
Organ Transplantation 2024;15(2):200-206
Organ transplantation is the optimal treatment for end-stage organ failure. Nevertheless, organ shortage is a global problem, which limits further development of organ transplantation. Recent research shows that genetically modified pig may become a realistic alternative source of clinical organ transplantation donor. Xenotransplantation may serve as one of the effective measures to resolve the problem of organ shortage. Since 2021, 2 cases of living xenotransplantation and 6 cases of xenotransplantation in brain death recipients have been performed worldwide, and phase Ⅰ clinical trial of xenotransplantation has been launched, and the results have exceeded expectations. Therefore, in this article, recent clinical trial results of xenotransplantation in living and brain death recipients were retrospectively analyzed, and scientific, technical and ethical issues related to clinical research of xenotransplantation were illustrated, hoping to provide reference for clinical research of xenotransplantation in China and promote the development of xenotransplantation in clinical practice.
8.Research report of living donor kidney harvesting in Bama miniature pigs with six gene modified
Yong XU ; Xiangyu SONG ; Heng’en WANG ; Shujun YANG ; Zhibo JIA ; Hao WEI ; Shengfeng CHEN ; Mengyi CUI ; Yanling REN ; Jiang PENG ; Shengkun SUN
Organ Transplantation 2024;15(2):229-235
Objective To summarize the experience and practical value of living donor kidney harvesting in Bama miniature pigs with six gene modified. Methods The left kidney of Bama miniature pigs with six gene modified was obtained by living donor kidney harvesting technique. First, the ureter was occluded, and then the inferior vena cava and abdominal aorta were freed. During the harvesting process, the ureter, renal vein and renal artery were exposed and freed in sequence. The vascular forceps were used at the abdominal aorta and inferior vena cava, and the renal artery and vein were immediately perfused with 4℃ renal preservation solution, and stored in ice normal saline for subsequent transplantation. Simultaneously, the donor abdominal aorta and inferior vena cava gap were sutured. The operation time, blood loss, warm and cold ischemia time, postoperative complications and the survival of donors and recipients were recorded. Results The left kidney of the genetically modified pig was successfully harvested. Intraoperative bleeding was 5 mL, warm ischemia time was 45 s, and cold ischemia time was 2.5 h. Neither donor nor recipient pig received blood transfusion, and urinary function of the kidney transplanted into the recipient was recovered. The donor survived for more than 8 months after the left kidney was resected. Conclusions Living donor kidney harvesting is safe and reliable in genetically modified pigs. Branch blood vessels could be processed during kidney harvesting, which shortens the process of kidney repair and the time of cold ischemia. Living donor kidney harvesting contributes to subsequent survival of donors and other scientific researches.
9.Dynamic observation on capillarization of liver sinusoidal endothelial cells induced by Echinococcus multilocularis infection
Renjie ZHANG ; Jun XIE ; Fanna WEI ; Xiaojin MO ; Peng SONG ; Yuchun CAI ; Yan LU ; Jiahui SUN ; Yan ZHOU ; Lin LIN ; Ting ZHANG ; Muxin CHEN
Chinese Journal of Schistosomiasis Control 2024;36(1):34-43
Objective To investigate the capillarization of liver sinusoidal endothelial cells (LSECs) and its association with hepatic fibrosis during the development of alveolar echinococcosis, so as to provide the basis for unraveling the mechanisms underlying the role of LSEC in the development and prognosis of hepatic injuries and hepatic fibrosis caused by alveolar echinococcosis. Methods Forty C57BL/6 mice at ages of 6 to 8 weeks were randomly divided into a control group and 1-, 2- and 4-week infection groups, of 10 mice in each group. Each mouse in the infection groups was intraperitoneally injected with 2 000 Echinococcus multilocularis protoscoleces, while each mouse in the control group was given an equal volume of phosphate-buffered saline using the same method. All mice were sacrificed 1, 2 and 4 weeks post-infection and mouse livers were collected. The pathological changes of livers were observed using hematoxylin-eosin (HE) staining, and hepatic fibrosis was evaluated through semi-quantitative analysis of Masson’s trichrome staining-positive areas. The activation of hepatic stellate cells (HSCs) and extracellular matrix (ECM) deposition were examined using immunohistochemical staining of α-smooth muscle actin (α-SMA) and collagen type I alpha 1 (COL1A1), and the fenestrations on the surface of LSECs were observed using scanning electron microscopy. Primary LSECs were isolated from mouse livers, and the mRNA expression of LSEC marker genes Stabilin-1, Stabilin-2, Ehd3, CD209b, GATA4 and Maf was quantified using real-time fluorescence quantitative PCR (qPCR) assay. Results Destruction of local liver lobular structure was observed in mice 2 weeks post-infection with E. multilocularis protoscoleces, and hydatid cysts, which were surrounded by granulomatous tissues, were found in mouse livers 4 weeks post-infection. Semi-quantitative analysis of Masson’s trichrome staining showed a significant difference in the proportion of collagen fiber contents in mouse livers among the four groups (F = 26.060, P < 0.001), and a higher proportion of collagen fiber contents was detected in mouse livers in the 4-week infection group [(11.29 ± 2.58)%] than in the control group (P < 0.001). Immunohistochemical staining revealed activation of a few HSCs and ECM deposition in mouse livers 1 and 2 weeks post-infection, and abundant brown-yellow stained α-SMA and COL1A1 were deposited in the lesion areas in mouse livers 4 weeks post-infection, which spread to surrounding tissues. Semi-quantitative analysis revealed significant differences in α-SMA (F = 7.667, P < 0.05) and COL1A1 expression (F = 6.530, P < 0.05) in mouse levers among the four groups, with higher α-SMA [(7.13 ± 3.68)%] and COL1A1 expression [(13.18 ± 7.20)%] quantified in mouse livers in the 4-week infection group than in the control group (both P values < 0.05). Scanning electron microscopy revealed significant differences in the fenestration frequency (F = 37.730, P < 0.001) and porosity (F = 16.010, P < 0.001) on the surface of mouse LSECs among the four groups, and reduced fenestration frequency and porosity were observed in the 1-[(1.22 ± 0.48)/μm2 and [(3.05 ± 0.91)%] and 2-week infection groups [(3.47 ± 0.10)/μm2 and (7.57 ± 0.23)%] groups than in the control group (all P values < 0.001). There was a significant difference in the average fenestration diameter on the surface of mouse LSECs among the four groups (F = 15.330, P < 0.001), and larger average fenestration diameters were measured in the 1-[(180.80 ± 16.42) nm] and 2-week infection groups [(161.70 ± 3.85) nm] than in the control group (both P values < 0.05). In addition, there were significant differences among the four groups in terms of Stabilin-1 (F = 153.100, P < 0.001), Stabilin-2 (F = 57.010, P < 0.001), Ehd3 (F = 31.700, P < 0.001), CD209b (F = 177.400, P < 0.001), GATA4 (F = 17.740, P < 0.001), and Maf mRNA expression (F = 72.710, P < 0.001), and reduced mRNA expression of Stabilin-1, Stabilin-2, Ehd3, CD209b, GATA4 and Maf genes was quantified in three infection groups than in the control group (all P values < 0.001). Conclusions E. multilocularis infections may induce capillarization of LSECs in mice, and result in a reduction in the expression of functional and phenotypic marker genes of LSECs, and capillarization of LSECs occurs earlier than activation of HSC and development of hepatic fibrosis.
10. Advances in relationship between pyroptosis and pulmonary arterial hypertension and therapeutic drugs
Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Sha-Sha LIU ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(1):25-30
Pyroptosis is the programmed death of cells accompanied by an inflammatory response and is widely involved in the development of a variety of diseases, such as infectious diseases, cardiovascular diseases, and neurodegeneration. It has been shown that cellular scorching is involved in the pathogenesis of pulmonary arterial hypertension ( PAH) in cardiovascular diseases. Patients with PAH have perivascular inflammatory infiltrates in lungs, pulmonary vasculopathy exists in an extremely inflam-matory microenvironment, and pro-inflammatory factors in cellular scorching drive pulmonary vascular remodelling in PAH patients. This article reviews the role of cellular scorch in the pathogenesis of PAH and the related research on drugs for the treatment of PAH, with the aim of providing new ideas for clinical treatment of PAH.

Result Analysis
Print
Save
E-mail