1.Toxicokinetics of MDMA and Its Metabolite MDA in Rats
Wei-Guang YU ; Qiang HE ; Zheng-Di WANG ; Cheng-Jun TIAN ; Jin-Kai WANG ; Qian ZHENG ; Fei REN ; Chao ZHANG ; You-Mei WANG ; Peng XU ; Zhi-Wen WEI ; Ke-Ming YUN
Journal of Forensic Medicine 2024;40(1):37-42
Objective To investigate the toxicokinetic differences of 3,4-methylenedioxy-N-methylamphetamine(MDMA)and its metabolite 4,5-methylene dioxy amphetamine(MDA)in rats af-ter single and continuous administration of MDMA,providing reference data for the forensic identifica-tion of MDMA.Methods A total of 24 rats in the single administration group were randomly divided into 5,10 and 20 mg/kg experimental groups and the control group,with 6 rats in each group.The ex-perimental group was given intraperitoneal injection of MDMA,and the control group was given intraperi-toneal injection of the same volume of normal saline as the experimental group.The amount of 0.5 mL blood was collected from the medial canthus 5 min,30 min,1 h,1.5 h,2 h,4 h,6 h,8 h,10 h,12 h after administration.In the continuous administration group,24 rats were randomly divided into the experi-mental group(18 rats)and the control group(6 rats).The experimental group was given MDMA 7 d by continuous intraperitoneal injection in increments of 5,7,9,11,13,15,17 mg/kg per day,respectively,while the control group was given the same volume of normal saline as the experimental group by in-traperitoneal injection.On the eighth day,the experimental rats were randomly divided into 5,10 and 20 mg/kg dose groups,with 6 rats in each group.MDMA was injected intraperitoneally,and the con-trol group was injected intraperitoneally with the same volume of normal saline as the experimental group.On the eighth day,0.5 mL of blood was taken from the medial canthus 5 min,30 min,1 h,1.5 h,2 h,4 h,6 h,8 h,10 h,12 h after administration.Liquid chromatography-triple quadrupole tandem mass spectrometry was used to detect MDMA and MDA levels,and statistical software was employed for data analysis.Results In the single-administration group,peak concentrations of MDMA and MDA were reached at 5 min and 1 h after administration,respectively,with the largest detection time limit of 12 h.In the continuous administration group,peak concentrations were reached at 30 min and 1.5 h af-ter administration,respectively,with the largest detection time limit of 10 h.Nonlinear fitting equations for the concentration ratio of MDMA and MDA in plasma and administration time in the single-administration group and continuous administration group were as follows:T=10.362C-1.183,R2=0.974 6;T=7.397 3C-0.694,R2=0.961 5(T:injection time;C:concentration ratio of MDMA to MDA in plasma).Conclusions The toxicokinetic data of MDMA and its metabolite MDA in rats,obtained through single and continuous administration,including peak concentration,peak time,detection time limit,and the relationship between concentration ratio and administration time,provide a theoretical and data foundation for relevant forensic identification.
2.Effects of sodium hydrosulfide on HK2-NLRP3-GSDMD pathway and pyroptosis induced by lung ischemia/reperfusion in rats
Lu SHI ; Xiaoting WANG ; Zhenzhen LUO ; Jun CHENG ; Sian CHEN ; Jun-Peng XU ; Qihao ZHANG ; Wenjie CAO ; Man HUANG ; Yunna TIAN ; Xuguang JIA ; Wantie WANG
Chinese Journal of Pathophysiology 2024;40(6):1105-1113
AIM:To investigate the effects of sodium hydrosulfide(NaHS)on hexokinase 2(HK2)-nucleo-tide-binding oligomerization domain-like receptor protein 3(NLRP3)-gasdermin D(GSDMD)pathway and pyroptosis in-duced by lung ischemia/reperfusion(I/R)in rats.METHODS:Male Sprague-Dawley rats were divided into 6 groups:control group,control+NaHS group,I/R group,low-dose NaHS+I/R(L+I/R)group,medium-dose NaHS+I/R(M+I/R)group,and high-dose NaHS+I/R(H+I/R)group,with 6 rats in each group.The NaHS was administered via intraperi-toneal injection at 1.5 mL,30 min before modeling.The left lung tissues were collected 30 min after ischemia and 1 h af-ter reperfusion,and the wet/dry weight ratio and total lung water content were recorded.Hematoxylin-eosin(HE)staining was used to examine lung tissue morphological changes.The levels of malondialdehyde(MDA),myeloperoxidase(MPO)and lactate in lung tissues were measured with test kits.ELISA was employed to determine the levels of interleukin-1β(IL-1β)and IL-18.The expression of glycolysis-and pyroptosis-related indicators was analyzed by Western blot,qRT-PCR and immunofluorescence staining.RESULTS:Compared with control group,the rats in NaHS group showed no signifi-cant differences in all laboratory tests(P>0.05).The rats in I/R group exhibited significant lung injury,oxidative stress,increased lactate level,and up-regulated glycolysis and pyroptosis(P<0.05 or P<0.01).Compared with I/R group,the indicators in L+I/R group showed a downward trend(P<0.01)or no difference(P>0.05),while those in M+I/R group dis-played a significant reduction(P<0.05 or P<0.01).However,the indexes in H+I/R group exhibited no significant dif-ferences in these tests(all P>0.05).CONCLUSION:A moderate dose(56 μmol·L-1·kg-1)of NaHS mitigated the oc-currence of pyroptosis by inhibiting the HK2-NLRP3-GSDMD pathway,thus contributing to the attenuation of lung I/R in-jury in rats.
3.Design of smart dual-microphone front-end system for speech interaction of portable field medical equipment
Jun-Peng TIAN ; Yong-Jie ZHENG ; Jia-Yang ZHANG ; Feng TONG ; Ji-Yang DONG
Chinese Medical Equipment Journal 2024;45(11):39-43
Objective To design a small-size dual-microphone front-end system to solve the problems of the portable field medical equipment in speech interaction due to noises in field conditions.Methods The system realized small-size dual-microphone beamforming based on the least squares criterion and then implemented front-end speech enhancement,which was composed of dual microphones(SMD micro electro mechanical system microphone),a signal preprocessing module,an embedded processor(STM32F405 series processor),an analog to digital converter(ADC),an digital to analog converter(DAC)and a power supply module.The signal preprocessing module,ADC and DAC were built into the general-purpose audio encoder WM8978,and a LM1117 voltage regulator chip was adopted as the power supply module.Keil μ Vision4 development software was used for software compiling and testing.Directivity experiment and speech enhancement experiment were carried out to verify the performance of the system.Results Directivity experiment showed that the system gained high directivity consistency at each frequency point in the frequency range of 0.5 to 2.0 kHz;speech enhancement experiment indicated that the system effectively improved the sound quality and recognition rate of speech under the conditions of three types of non-smooth noises,namely,gunshot,alarm of the monitor and collision of the medical utensils.Connclusion The system developed can realize speech enhancement to facilitate speech interaction of the portable field medical equipment.[Chinese Medical Equipment Journal,2024,45(11):39-43]
4.Small molecule deoxynyboquinone triggers alkylation and ubiquitination of Keap1 at Cys489 on Kelch domain for Nrf2 activation and inflammatory therapy
Linghu KE-GANG ; Zhang TIAN ; Zhang GUANG-TAO ; Lv PENG ; Zhang WEN-JUN ; Zhao GUAN-DING ; Xiong SHI-HANG ; Ma QIU-SHUO ; Zhao MING-MING ; Chen MEIWAN ; Hu YUAN-JIA ; Zhang CHANG-SHENG ; Yu HUA
Journal of Pharmaceutical Analysis 2024;14(3):401-415
Activation of nuclear factor erythroid 2-related factor 2(Nrf2)by Kelch-like ECH-associated protein 1(Keap1)alkylation plays a central role in anti-inflammatory therapy.However,activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified.Deoxynyboquinone(DNQ)is a natural small molecule discovered from marine actinomycetes.The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1.DNQ exhibited signif-icant anti-inflammatory properties both in vitro and in vivo.The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α,β-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine.DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway.Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation.The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry.DNQ triggered the ubiquitination and subsequent degra-dation of Keap1 by alkylation of the cysteine residue 489(Cys489)on Keap1-Kelch domain,ultimately enabling the activation of Nrf2.Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α,β-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain,suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.
5.Role of specific lncSLC25a6 in homocysteine-induced cuproptosis in rat cardiomyocytes
Shujuan LI ; Hui HUANG ; Hongyang CHI ; Lexin WANG ; Tianyu HE ; Fu-Jun MA ; Yancheng TIAN ; Caiqi ZHAO ; Hongjian PENG ; Yideng JIANG ; Li YANG ; Shengchao MA
Chinese Journal of Pathophysiology 2024;40(8):1399-1407
AIM:To investigate the role of specific long noncoding RNA SLC25a6(lncSLC25a6)in homocys-teine(Hcy)-induced cuproptosis in cardiomyocytes.METHODS:Rat cardiomyocytes were cultured in vitro and divided into control group and Hcy group.After 48 h of intervention,the expression levels of cuproptosis-related proteins,ferre-doxin 1(FDX1)and heat shock protein 70(HSP70),were detected by Western blot and immunofluorescence staining.The oxidative stress state of cardiomyocytes was assessed using fluorescence staining,and the intracellular Cu2+levels were measured using a copper ion assay kit.Furthermore,the impact of Hcy on the expression of cuproptosis-related proteins in cardiomyocytes was analyzed following overexpression of lncSLC25a6.RESULTS:Compared with the control group,80 μmol/L Hcy significantly accelerated cardiomyocyte damage,with a notable underexpression of lncSLC25a6(P<0.05).Western blot results indicated that,compared with the control group,the expression level of FDX1 in the Hcy intervention group was significantly reduced(P<0.05),while the expression level of HSP70 was significantly elevated(P<0.05),and the expression level of copper ions in cardiomyocytes of the Hcy group was increased(P<0.05).Immunofluorescence staining showed a significant reduction in FDX1 fluorescence intensity and a significant increase in HSP70 fluorescence in-tensity in the Hcy group.Further overexpression of lncSLC25a6 significantly mitigated Hcy-induced cuproptosis in cardio-myocytes,resulting in elevated expression of FDX1 and reduced expression of HSP70(P<0.05).Pearson correlation analysis demonstrated that the expression level of lncSLC25a6 was negatively correlated with FDX1 protein expression(r=-0.676,P=0.046)and positively correlated with HSP70 expression(r=0.680,P=0.044).CONCLUSION:lnc-SLC25a6 significantly mitigates Hcy-induced cuproptosis in cardiomyocytes,positioning it as a potential therapeutic target for managing Hcy-induced cardiac injury.
6.Diagnostic concordance and influencing factors of quantitative flow fraction and fractional flow reserve
Rui-Tao ZHANG ; Peng-Xin XIE ; Zhen-Yu TIAN ; Lin MI ; Ji-Sheng ZHOU ; Ben-Zhen WU ; Li-Yun HE ; Li-Jun GUO
Chinese Journal of Interventional Cardiology 2024;32(9):481-488
Objective This study aimed to explore the diagnostic concordance of fractional flow reserve(FFR)and quantitative flow ratio(QFR)and the characteristics affecting this concordance.Methods Patients with non-acute myocardial infarction admitted to the Department of Cardiology,Peking University Third Hospital between January 2019 and December 2021 were enrolled.The patients were divided into four groups:FFR+/QFR+and FFR-/QFR-,FFR+/QFR-and FFR-/QFR+with FFR or QFR≤0.80 as positive and>0.80 as negative.Using FFR as the gold standard,the diagnostic value of QFR was analyzed,and differences in clinical features and pathological characteristics among the groups were compared.Results A total of 236 patients were included.The mean age was(64.48±9.63)years,and 67.8%were male.All patients had 30%-70%coronary stenosis.The consistency rate of QFR and FFR was 78.0%(n=184),and the Person correlation coefficient was 0.557(P<0.001).Among FFR+patients,the minimum lumen diameter was larger[(1.56±0.34)mm vs.(1.39±0.31)mm,P=0.019],lesion length was shorter[(21.37±11.73)mm vs.(36.86±18.09)mm,P<0.001],and coronary angiography-based index of microcirculartory resistance(AMR)was higher[(277.50±28.87)mmHg·s/m vs.(178.02±49.13)mmHg·s/m,P<0.001]in the disconcordance group.Multivariate regression analysis suggested that AMR[OR 0.93,95%CI 0.88-0.99,P=0.030]and lesion length[OR 1.27,95%CI 1.01-1.60,P=0.045]were independent predictors of disconcordance.In the FFR-group,the lesion length was longer[(33.08±16.05)mm vs.(21.40±13.36)mm,P=0.020],and AMR[(169.66±24.01)mmHg·s/m vs.(265.95±44.78)mmHg·s/m,P<0.001]and low-density lipoprotein-C[1.57(1.10,1.97)mmol/L vs.2.15(1.79,2.74)mmol/L,P=0.031]were lower in the disconcordance group.No statistically significant variables were identified by multivariate regression.Conclusions QFR had high diagnostic value compared with FFR.In the FFR+group,AMR and lesion length may have affected the diagnostic consistency of QFR and FFR.The study provided more evidence for the clinical application of QFR.
7.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
8.Gene cloning, functional identification, structural and expression analysis of sucrose synthase from Cistanche tubulosa
Wei-sheng TIAN ; Ya-ru YAN ; Xiao-xue CUI ; Ying-xia WANG ; Wen-qian HUANG ; Sai-jing ZHAO ; Jun LI ; She-po SHI ; Peng-fei TU ; Xiao LIU
Acta Pharmaceutica Sinica 2024;59(11):3153-3163
Sucrose synthase plays a crucial role in the plant sugar metabolism pathway by catalyzing the production of uridine diphosphate (UDP)-glucose, which serves as a bioactive glycosyl donor for various metabolic processes. In this study, a sucrose synthase gene named
9.Leonurine inhibits ferroptosis in renal tubular epithelial cells by activating p62/Nrf2/HO-1 signaling pathway.
Ai-Jun WU ; Nai-Qing CHEN ; Li-Hua HUANG ; Ran CHENG ; Xiao-Wan WANG ; Chuang LI ; Wei MAO ; Qing-Ming HUANG ; Peng XU ; Rui-Min TIAN
China Journal of Chinese Materia Medica 2023;48(8):2176-2183
To investigate the protective effect and the potential mechanism of leonurine(Leo) against erastin-induced ferroptosis in human renal tubular epithelial cells(HK-2 cells), an in vitro erastin-induced ferroptosis model was constructed to detect the cell viability as well as the expressions of ferroptosis-related indexes and signaling pathway-related proteins. HK-2 cells were cultured in vitro, and the effects of Leo on the viability of HK-2 cells at 10, 20, 40, 60, 80 and 100 μmol·L~(-1) were examined by CCK-8 assay to determine the safe dose range of Leo administration. A ferroptosis cell model was induced by erastin, a common ferroptosis inducer, and the appropriate concentrations were screened. CCK-8 assay was used to detect the effects of Leo(20, 40, 80 μmol·L~(-1)) and positive drug ferrostatin-1(Fer-1, 1, 2 μmol·L~(-1)) on the viability of ferroptosis model cells, and the changes of cell morphology were observed by phase contrast microscopy. Then, the optimal concentration of Leo was obtained by Western blot for nuclear factor erythroid 2-related factor 2(Nrf2) activation, and transmission electron microscope was further used to detect the characteristic microscopic morphological changes during ferroptosis. Flow cytometry was performed to detect reactive oxygen species(ROS), and the level of glutathione(GSH) was measured using a GSH assay kit. The expressions of glutathione peroxidase 4(GPX4), p62, and heme oxygenase 1(HO-1) in each group were quantified by Western blot. RESULTS:: showed that Leo had no side effects on the viability of normal HK-2 cells in the concentration range of 10-100 μmol·L~(-1). The viability of HK-2 cells decreased as the concentration of erastin increased, and 5 μmol·L~(-1) erastin significantly induced ferroptosis in the cells. Compared with the model group, Leo dose-dependently increased cell via-bility and improved cell morphology, and 80 μmol·L~(-1) Leo promoted the translocation of Nrf2 from the cytoplasm to the nucleus. Further studies revealed that Leo remarkably alleviated the characteristic microstructural damage of ferroptosis cells caused by erastin, inhibited the release of intracellular ROS, elevated GSH and GPX4, promoted the nuclear translocation of Nrf2, and significantly upregulated the expression of p62 and HO-1 proteins. In conclusion, Leo exerted a protective effect on erastin-induced ferroptosis in HK-2 cells, which might be associated with its anti-oxidative stress by activating p62/Nrf2/HO-1 signaling pathway.
Humans
;
Ferroptosis
;
Reactive Oxygen Species/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Sincalide/pharmacology*
;
Signal Transduction
;
Epithelial Cells/metabolism*
;
Glutathione
10.Survival analysis of patients with intrahepatic cholangiocarcinoma treated with adjuvant chemotherapy after radical resection based on CoxPH model and deep learning algorithm.
Jia Lu CHEN ; Xiao Peng YU ; Yue TANG ; Chen CHEN ; Ying He QIU ; Hong WU ; Tian Qiang SONG ; Yu HE ; Xian Hai MAO ; Wen Long ZHAI ; Zhang Jun CHENG ; Jing Dong LI ; Zhi Min GENG ; Zhao Hui TANG ; Zhi Wei QUAN
Chinese Journal of Surgery 2023;61(4):313-320
Objective: To establish a predictive model for survival benefit of patients with intrahepatic cholangiocarcinoma (ICC) who received adjuvant chemotherapy after radical resection. Methods: The clinical and pathological data of 249 patients with ICC who underwent radical resection and adjuvant chemotherapy at 8 hospitals in China from January 2010 to December 2018 were retrospectively collected. There were 121 males and 128 females,with 88 cases>60 years old and 161 cases≤60 years old. Feature selection was performed by univariate and multivariate Cox regression analysis. Overall survival time and survival status were used as outcome indicators,then target clinical features were selected. Patients were stratified into high-risk group and low-risk group,survival differences between the two groups were analyzed. Using the selected clinical features, the traditional CoxPH model and deep learning DeepSurv survival prediction model were constructed, and the performance of the models were evaluated according to concordance index(C-index). Results: Portal vein invasion, carcinoembryonic antigen>5 μg/L,abnormal lymphocyte count, low grade tumor pathological differentiation and positive lymph nodes>0 were independent adverse prognostic factors for overall survival in 249 patients with adjuvant chemotherapy after radical resection (all P<0.05). The survival benefit of adjuvant chemotherapy in the high-risk group was significantly lower than that in the low-risk group (P<0.05). Using the above five features, the traditional CoxPH model and the deep learning DeepSurv survival prediction model were constructed. The C-index values of the training set were 0.687 and 0.770, and the C-index values of the test set were 0.606 and 0.763,respectively. Conclusion: Compared with the traditional Cox model, the DeepSurv model can more accurately predict the survival probability of patients with ICC undergoing adjuvant chemotherapy at a certain time point, and more accurately judge the survival benefit of adjuvant chemotherapy.

Result Analysis
Print
Save
E-mail