1.Cangxi Tongbi Capsules promote chondrocyte autophagy by regulating circRNA_0008365/miR-1271/p38 MAPK pathway to inhibit development of knee osteoarthritis.
Wen-Peng XIE ; Teng MA ; Yan-Chen LIANG ; Xiang-Peng WANG ; Rong-Xiu BI ; Wei-Guo WANG ; Yong-Kui ZHANG
China Journal of Chinese Materia Medica 2023;48(18):4843-4851
To investigate the mechanism by which Cangxi Tongbi Capsules promote chondrocyte autophagy to inhibit knee osteoarthritis(KOA) progression by regulating the circRNA_0008365/miR-1271/p38 mitogen-activated protein kinase(MAPK) pathway. The cell and animal models of KOA were established and intervened with Cangxi Tongbi Capsules, si-circRNA_0008365, si-NC, and Cangxi Tongbi Capsules combined with si-circRNA_0008365. Flow cytometry and transmission electron microscopy were employed to determine the level of apoptosis and observe autophagosomes, respectively. Western blot was employed to reveal the changes in the protein levels of microtubule-associated protein light chain 3(LC3)Ⅱ/Ⅰ, Beclin-1, selective autophagy junction protein p62/sequestosome 1, collagen Ⅱ, a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS-5), and p38 MAPK. The mRNA levels of circRNA_0008365, miR-1271, collagen Ⅱ, and ADAMTS-5 were determined by qRT-PCR. Hematoxylin-eosin staining was employed to reveal the pathological changes of the cartilage tissue of the knee, and enzyme-linked immunosorbent assay to measure the levels of interleukin-1β(IL-1β) and tumor necrosis factor-alpha(TNF-α). The chondrocytes treated with IL-1β showed down-regulated expression of circRNA_0008365, up-regulated expression of miR-1271 and p38 MAPK, lowered autophagy level, increased apoptosis rate, and accelerated catabolism of extracellular matrix. The intervention with Cangxi Tongbi Capsules up-regulated the expression of circRNA_0008365, down-regulated the expression of miR-1271 and p38 MAPK, increased the autophagy level, decreased the apoptosis rate, and weakened the catabolism of extracellular matrix. However, the effect of Cangxi Tongbi Capsules was suppressed after interfering with circRNA_0008365. The in vivo experiments showed that Cangxi Tongbi Capsules dose-dependently inhibited the p38 MAPK pathway, enhanced chondrocyte autophagy, and mitigated articular cartilage damage and inflammatory response, thereby inhibiting the progression of KOA in rats. This study indicated that Cangxi Tongbi Capsules promoted chondrocyte autophagy by regulating the circRNA_0008365/miR-1271/p38 MAPK pathway to inhibit the development of KOA.
Rats
;
Animals
;
Chondrocytes
;
Osteoarthritis, Knee/pathology*
;
RNA, Circular/pharmacology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
MicroRNAs/metabolism*
;
Apoptosis
;
Autophagy/genetics*
;
Collagen/metabolism*
2.Tetrahydropalmatine alleviated diabetic neuropathic pain by inhibiting activation of microglia via p38 MAPK signaling pathway.
Lian-Zhi CHENG ; Jia-Mei ZHOU ; Jun-Long MA ; Fan-Jing WANG ; Kai CHENG ; Qian CHEN ; Hui-Lun YUAN ; Ai-Juan JIANG
China Journal of Chinese Materia Medica 2022;47(9):2533-2540
Neuropathic pain is one of the common complications of diabetes. Tetrahydropalmatine(THP) is a main active component of Corydalis Rhizoma with excellent anti-inflammatory and pain-alleviating properties. This study aims to investigate the therapeutic effect of THP on diabetic neuropathic pain(DNP) and the underlying mechanism. High-fat and high-sugar diet(4 weeks) and streptozotocin(STZ, 35 mg·kg~(-1), single intraperitoneal injection) were employed to induce type-2 DNP in rats. Moreover, lipopolysaccharide(LPS) was used to induce the activation of BV2 microglia in vitro to establish an inflammatory cellular model. Fasting blood glucose(FBG) was measured by a blood glucose meter. Mechanical withdrawal threshold(MWT) was assessed with von Frey filaments, and thermal withdrawal latency(TWL) with hot plate apparatus. The protein expression levels of OX42, inducible nitric oxide synthase(iNOS), CD206, p38, and p-p38 were determined by Western blot, the fluorescence expression levels of OX42 and p-p38 in the dorsal horn of the rat spinal cord by immunofluorescence, the mRNA content of p38 and OX42 in rat spinal cord tissue by qRT-PCR, and levels of nitric oxide(NO), interleukin-1β(IL-1β), interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), and serum fasting insulin(FINS) by enzyme-linked immunosorbent assay(ELISA). RESULTS:: showed that the mo-del group demonstrated significant decrease in MWT and TWL, with pain symptoms. THP significantly improved the MWT and TWL of DNP rats, inhibited the activation of microglia and p38 MAPK signaling pathway in rat spinal cord, and ameliorated its inflammatory response. Meanwhile, THP promoted the change of LPS-induced BV2 microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, suppressed the activation of the p38 MAPK signaling pathway, decreased the expression levels of inflammatory factors NO, IL-1β, IL-6, and TNF-α, and increased the expression level of anti-inflammatory factor IL-10. The findings suggested that THP can significantly ameliorate the pain symptoms of DNP rats possibly by inhibiting the inflammatory response caused by M1 polarization of microglia via the p38 MAPK pathway.
Animals
;
Berberine Alkaloids
;
Blood Glucose/metabolism*
;
Diabetes Mellitus
;
Diabetic Neuropathies/genetics*
;
Interleukin-10
;
Interleukin-6/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Microglia
;
Neuralgia/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Spinal Cord/metabolism*
;
Streptozocin/therapeutic use*
;
Tumor Necrosis Factor-alpha/metabolism*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
3.Activity of Codonopsis canescens against rheumatoid arthritis based on TLRs/MAPKs/NF-κB signaling pathways and its mechanism.
Yu-Jie WANG ; Xiao-Yu ZHONG ; Xin-Hong WANG ; Yuan-Han ZHONG ; Lin LIU ; Fang-Yuan LIU ; Jin-Xiang ZENG ; Ji-Xiao ZHU ; Xiao-Lang DU ; Min LI ; Gang REN ; Guo-Yue ZHONG ; Xiao-Min WANG
China Journal of Chinese Materia Medica 2022;47(22):6164-6174
This paper aims to explore the activity of Codonopsis canescens extract against rheumatoid arthritis(RA) based on the Toll-like receptors(TLRs)/mitogen-activated protein kinases(MAPKs)/nuclear factor kappa B(NF-κB) signaling pathways and its mechanism. The ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry(UPLC-Q-TOF-MS) was used to identify the components of C. canescens extract. Forty-eight male SD rats were randomly divided into six groups, namely the normal group, the model group, the methotrexate(MTX) tablet group, and the low, medium, and high-dose C. canescens extract(ZDS-L, ZDS-M, and ZDS-H) groups, with 8 rats in each group. The model of collagen-induced arthritis in rats was induced by injection of bovine type Ⅱ collagen emulsion. MTX(2.5 mg·kg~(-1)), ZDS-L, ZDS-M, and ZDS-H(0.3 g·kg~(-1), 0.6 g·kg~(-1), and 1.2 g·kg~(-1)) were administrated by gavage. Rats in the normal group and the model group received distilled water. MTX was given once every three days for 28 days, and the rest medicines were given once daily for 28 days. Body weight, degree of foot swelling, arthritis index, immune organ index, synovial histopathological changes, and serum levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), and interleukin-6(IL-6) were observed. Protein expressions of TLR2, TLR4, NF-κB p65, p38 MAPK, and p-p38 MAPK in rats were determined by Western blot. Thirty-four main components were identified by UPLC-Q-TOF-MS, including 15 flavonoids, 7 phenylpropanoids, 4 terpenoids, 4 organic acids, 2 esters, and 2 polyalkynes. As compared with the normal group, the body weight of the model group was significantly decreased(P<0.01), and foot swelling(P<0.05, P<0.01), arthritis index(P<0.01), and the immune organ index(P<0.01) were significantly increased. The synovial histopathological injury was obviously observed in the model group. The serum levels of inflammatory factors TNF-α, IL-1β, and IL-6 were significantly increased(P<0.01), and the protein expression levels of TLR2, TLR4, NF-κB p65, p-p38 MAPK/p38 MAPK in the synovial tissue were significantly increased(P<0.01) in the model group. As compared with the model group, the body weights of the ZDS dose groups were increased(P<0.01), and the degree of foot swelling(P<0.01) and the arthritis index were decreased(P<0.05, P<0.01). The immune organ index was decreased(P<0.01) in the ZDS dose groups, and the synovial tissue hyperplasia and inflammatory cell infiltration were alleviated. The serum levels of TNF-α, IL-1β, and IL-6 were significantly decreased(P<0.05, P<0.01), and the protein expression levels of TLR2, TLR4, NF-κB p65, p-p38 MAPK/p38 MAPK were decreased(P<0.05, P<0.01) in the ZDS dose groups. C. canescens extract containing apigenin, tricin, chlorogenic acid, aesculin, ferulic acid, caffeic acid, and oleanolic acid has a good anti-RA effect, and the mechanism may be related to the inhibition of TLRs/MAPKs/NF-κB signaling pathways.
Animals
;
Cattle
;
Male
;
Rats
;
Arthritis, Experimental/drug therapy*
;
Arthritis, Rheumatoid/drug therapy*
;
Body Weight
;
Codonopsis/chemistry*
;
Interleukin-6/blood*
;
NF-kappa B/genetics*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Plant Extracts/therapeutic use*
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Toll-Like Receptor 2/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha/pharmacology*
4.Effects of MD2 gene silencing on high glucose-induced proliferation inhibition, apoptosis and inflammation in rat cardiomyocytes.
Zhong-Min LIN ; Guo-Rong CHEN ; Quan-Bo ZHANG ; Fang WANG ; Lan-Ting XIANG ; Qiong-Jie CAO
Chinese Journal of Applied Physiology 2019;35(3):273-278
OBJECTIVE:
To investigate the effects of myeloid differentiation-2 (MD2) gene silencing on high glucose-induced proliferation inhibition, apoptosis and inflammation in rat cardiomyocytes.
METHODS:
The immortalized rat cardiomyocyte cell line H9C2 were transfected with MD2 small interfering RNA (si-MD2) and negative control for 24 h, then stimulated with high glucose (HG) for 48 h. RT-qPCR was performed to detect the mRNA levels of MD2 and inflammatory factors TNF-α, IL-1β and IL-6. MTS and flow cytometry were used to evaluate cell proliferation, cell cycle and apoptosis rate. Western blot was used to detect protein expression levels and phosphorylation levels.
RESULTS:
The mRNA and protein levels of MD2 in H9C2 cells were dramatically decreased after transfected with si-MD2 (P<0.01). After stimulation of high glucose, the mRNA levels of inflammatory factors, the cells in G0/G1 phase , the cell apoptosis rate and the protein level of cleaved Caspase-3 were significantly increased, while the cell proliferation ability was decreased (P<0.01). MD2 gene silencing antagonized the effects of high glucose on cell proliferation, cell cycle, cell apoptosis and the mRNA levels of TNF-α, IL-1β , IL-6(P<0.05). Western blot analysis showed that the phosphorylation levels of extracellular signal-regulated kinase(ERK1/2), P38 mitogen-activated protein kinase(P38 MAPK) and C-Jun N-terminal kinase(JNK) protein were increased significantly in H9C2 cells treated with high glucose, which could be reversed by silencing of MD2 (P<0.01).
CONCLUSION
This study demonstrates that MD2 gene silencing reverses high glucose-induced myocardial inflammation, apoptosis and proliferation inhibition via the mechanisms involving suppression of ERK, P38 MAPK, JNK signaling pathway.
Animals
;
Apoptosis
;
Cell Proliferation
;
Cells, Cultured
;
Cytokines
;
metabolism
;
Gene Silencing
;
Glucose
;
Inflammation
;
JNK Mitogen-Activated Protein Kinases
;
metabolism
;
Lymphocyte Antigen 96
;
genetics
;
Myocytes, Cardiac
;
cytology
;
Rats
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
5.Effects of Shenmai injection on the expression of p38MAPK and the apoptosis-related genes in lung injury induced by intestinal ischemia/reperfusion in rats.
Jia-Han ZHAO ; Yu-Han JIA ; Ya-Ting TANG ; Yi-Xin LIN ; Yan-Lei WANG
Chinese Journal of Applied Physiology 2019;35(1):65-68
OBJECTIVE:
To observe the effects of Shenmai injection(SM) on p38MAPK and the apoptosis-related genes in lung injury induced by intestinal ischemia reperfusion (I/R) in rats and to investigate the protective mechanism of SM.
METHODS:
Rat model of intestinal I/R injury was established with clamping of the superior mesenteric artery (SMA) for 60 min and then clamping was relieved for 60 min. Twenty-four SD rats were randomly divided into three groups with eight rats in each: control group, intestinal ischemia/reperfusion group(I/R group), Shenmai injection treated group (SM+I/R group). Lung wet/dry weight ratio(W/D), the contents of phosphatidylcholine (PC) and total phospholipid(TPL) which are the major ingredients of pulmonary surfactant were measured, as well as the expression levels of p38MAPK, Bcl-2 and Bax proteins in lung tissue were examined by using immunohistochemical method.
RESULTS:
Compared with control group, lung W/D was significantly increased, the contents of PC and TPL were significantly decreased, the protein expression levels of p38MAPK, Bcl-2 and Bax were significantly increased in I/R group (all P<0.01). But Bax protein expression was much greater than Bcl-2 protein expression, the ratio of Bcl-2 to Bax were significantly decreased in I/R group than that in control group (P<0.01). Compared with I/R group, lung W/D was significantly decreased, while the contents of PC and TPL were significantly increased, the p38MAPK and Bax protein expression levels were significantly decreased in SM+I/R group (all P<0.01); both Bcl-2 protein expression and the ratio of Bcl-2 to Bax were significantly increased in SM+I/R group than those in I/R group (P<0.01). The correlation analysis indicated that the expression level of p38MAPK protein in lung tissue was negatively correlated with the contents of PC and the ratio of Bcl-2 to Bax (r is -0.787 and -0.731, all P<0.01).
CONCLUSION
SM can protect the lung injury induced by intestinal I/R injury, which may be mediated by inhibiting the activation of p38MAPK, improving the ratio of Bcl-2 to Bax to inhibit lung apoptosis.
Animals
;
Apoptosis
;
Drug Combinations
;
Drugs, Chinese Herbal
;
pharmacology
;
Lung Injury
;
drug therapy
;
genetics
;
Proto-Oncogene Proteins c-bcl-2
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
complications
;
bcl-2-Associated X Protein
;
p38 Mitogen-Activated Protein Kinases
;
drug effects
;
metabolism
6.Effects of Glucocorticoid-Induced Transcript 1 Gene Deficiency on Glucocorticoid Activation in Asthmatic Mice.
Cheng-Ping HU ; Qiu-Fen XUN ; Xiao-Zhao LI ; Xin-Yue HU ; Ling QIN ; Ruo-Xi HE ; Jun-Tao FENG
Chinese Medical Journal 2018;131(23):2817-2826
Background:
Glucocorticoid (GC) is the first-line therapy for asthma, but some asthmatics are insensitive to it. Glucocorticoid-induced transcript 1 gene (GLCCI1) is reported to be associated with GCs efficiency in asthmatics, while its exact mechanism remains unknown.
Methods:
A total of 30 asthmatic patients received fluticasone propionate for 12 weeks. Forced expiratory volume in 1 s (FEV) and GLCCI1 expression were detected. Asthma model was constructed in wild-type and GLCCI1 knockout (GLCCI1) mice. Glucocorticoid receptor (GR) and mitogen-activated protein kinase phosphatase 1 (MKP-1) expression were detected by polymerase chain reaction and Western blotting (WB). The phosphorylation of p38 mitogen-activated protein kinase (MAPK) was also detected by WB.
Results:
In asthmatic patients, the change of FEV was well positively correlated with change of GLCCI1 expression (r = 0.430, P = 0.022). In animal experiment, GR and MKP-1 mRNA levels were significantly decreased in asthmatic mice than in control mice (wild-type: GR: 0.769 vs. 1.000, P = 0.022; MKP-1: 0.493 vs. 1.000, P < 0.001. GLCCI1: GR: 0.629 vs. 1.645, P < 0.001; MKP-1: 0.377 vs. 2.146, P < 0.001). Hydroprednisone treatment significantly increased GR and MKP-1 mRNA expression levels than in asthmatic groups; however, GLCCI1 asthmatic mice had less improvement (wild-type: GR: 1.517 vs. 0.769, P = 0.023; MKP-1: 1.036 vs. 0.493, P = 0.003. GLCCI1: GR: 0.846 vs. 0.629, P = 0.116; MKP-1: 0.475 vs. 0.377, P = 0.388). GLCCI1 asthmatic mice had more obvious phosphorylation of p38 MAPK than wild-type asthmatic mice (9.060 vs. 3.484, P < 0.001). It was still higher even though after hydroprednisone treatment (6.440 vs. 2.630, P < 0.001).
Conclusions:
GLCCI1 deficiency in asthmatic mice inhibits the activation of GR and MKP-1 and leads to more obvious phosphorylation of p38 MAPK, leading to a decremental sensitivity to GCs.
Trial Registration
ChiCTR.org.cn, ChiCTR-RCC-13003634; http://www.chictr.org.cn/showproj.aspx?proj=5926.
Animals
;
Asthma
;
drug therapy
;
metabolism
;
Dual Specificity Phosphatase 1
;
genetics
;
metabolism
;
Forced Expiratory Volume
;
genetics
;
physiology
;
Glucocorticoids
;
therapeutic use
;
Mice
;
Mice, Knockout
;
Phosphorylation
;
genetics
;
physiology
;
Receptors, Glucocorticoid
;
deficiency
;
genetics
;
metabolism
;
p38 Mitogen-Activated Protein Kinases
;
genetics
;
metabolism
7.Sex Differences in Neuropathology and Cognitive Behavior in APP/PS1/tau Triple-Transgenic Mouse Model of Alzheimer's Disease.
Jun-Ting YANG ; Zhao-Jun WANG ; Hong-Yan CAI ; Li YUAN ; Meng-Ming HU ; Mei-Na WU ; Jin-Shun QI
Neuroscience Bulletin 2018;34(5):736-746
Alzheimer's disease (AD) is the most common form of dementia among the elderly, characterized by amyloid plaques, neurofibrillary tangles, and neuroinflammation in the brain, as well as impaired cognitive behaviors. A sex difference in the prevalence of AD has been noted, while sex differences in the cerebral pathology and relevant molecular mechanisms are not well clarified. In the present study, we systematically investigated the sex differences in pathological characteristics and cognitive behavior in 12-month-old male and female APP/PS1/tau triple-transgenic AD mice (3×Tg-AD mice) and examined the molecular mechanisms. We found that female 3×Tg-AD mice displayed more prominent amyloid plaques, neurofibrillary tangles, neuroinflammation, and spatial cognitive deficits than male 3×Tg-AD mice. Furthermore, the expression levels of hippocampal protein kinase A-cAMP response element-binding protein (PKA-CREB) and p38-mitogen-activated protein kinases (MAPK) also showed sex difference in the AD mice, with a significant increase in the levels of p-PKA/p-CREB and a decrease in the p-p38 in female, but not male, 3×Tg-AD mice. We suggest that an estrogen deficiency-induced PKA-CREB-MAPK signaling disorder in 12-month-old female 3×Tg-AD mice might be involved in the serious pathological and cognitive damage in these mice. Therefore, sex differences should be taken into account in investigating AD biomarkers and related target molecules, and estrogen supplementation or PKA-CREB-MAPK stabilization could be beneficial in relieving the pathological damage in AD and improving the cognitive behavior of reproductively-senescent females.
Alzheimer Disease
;
metabolism
;
pathology
;
psychology
;
Amyloid beta-Protein Precursor
;
genetics
;
metabolism
;
Animals
;
Cyclic AMP Response Element-Binding Protein
;
metabolism
;
Cyclic AMP-Dependent Protein Kinases
;
metabolism
;
Disease Models, Animal
;
Female
;
Hippocampus
;
metabolism
;
pathology
;
Humans
;
Inflammation
;
metabolism
;
pathology
;
psychology
;
Male
;
Maze Learning
;
physiology
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Neurofibrillary Tangles
;
metabolism
;
pathology
;
Plaque, Amyloid
;
metabolism
;
pathology
;
psychology
;
Presenilin-1
;
genetics
;
metabolism
;
Sex Characteristics
;
Spatial Memory
;
physiology
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
;
tau Proteins
;
genetics
;
metabolism
8.ASIC1a contributes to the symptom of pain in a rat model of chronic prostatitis.
Song FAN ; Zong-Yao HAO ; Li ZHANG ; Jun ZHOU ; Yi-Fei ZHANG ; Shen TAI ; Xian-Sheng ZHANG ; Chao-Zhao LIANG
Asian Journal of Andrology 2018;20(3):300-305
This study aims to validate our hypothesis that acid-sensing ion channels (ASICs) may contribute to the symptom of pain in patients with chronic prostatitis (CP). We first established a CP rat model, then isolated the L5-S2 spinal dorsal horn neurons for further studies. ASIC1a was knocked down and its effects on the expression of neurogenic inflammation-related factors in the dorsal horn neurons of rat spinal cord were evaluated. The effect of ASIC1a on the Ca2+ ion concentration in the dorsal horn neurons of rat spinal cord was measured by the intracellular calcium ([Ca2+]i) intensity. The effect of ASIC1a on the p38/mitogen-activated protein kinase (MAPK) signaling pathway was also determined. ASIC1a was significantly upregulated in the CP rat model as compared with control rats. Acid-induced ASIC1a expression increased [Ca2+]i intensity in the dorsal horn neurons of rat spinal cord. ASIC1a also increased the levels of neurogenic inflammation-related factors and p-p38 expression in the acid-treated dorsal horn neurons. Notably, ASIC1a knockdown significantly decreased the expression of pro-inflammatory cytokines. Furthermore, the levels of p-p38 and pro-inflammatory cytokines in acid-treated dorsal horn neurons were significantly decreased in the presence of PcTx-1, BAPTA-AM, or SB203580. Our results showed that ASIC1a may contribute to the symptom of pain in patients with CP, at least partially, by regulating the p38/MAPK signaling pathway.
Acid Sensing Ion Channel Blockers/pharmacology*
;
Acid Sensing Ion Channels/genetics*
;
Animals
;
Calcium/metabolism*
;
Chelating Agents/pharmacology*
;
Chronic Disease
;
Cytokines/metabolism*
;
Disease Models, Animal
;
Egtazic Acid/pharmacology*
;
Gene Knockdown Techniques
;
Imidazoles/pharmacology*
;
Inflammation/metabolism*
;
MAP Kinase Signaling System/genetics*
;
Male
;
Pain/genetics*
;
Peptides/pharmacology*
;
Phosphorylation/drug effects*
;
Posterior Horn Cells/metabolism*
;
Prostatitis/complications*
;
Protein Kinase Inhibitors/pharmacology*
;
Pyridines/pharmacology*
;
Rats
;
Spider Venoms/pharmacology*
;
Up-Regulation
;
p38 Mitogen-Activated Protein Kinases/metabolism*
9.β3-adrenoceptor impacts apoptosis in cultured cardiomyocytes via activation of PI3K/Akt and p38MAPK.
Miao-miao MA ; Xiao-li ZHU ; Li WANG ; Xiao-fang HU ; Zhong WANG ; Jin ZHAO ; Yi-tong MA ; Yi-ning YANG ; Bang-dang CHEN ; Fen LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):1-7
β3-adrenoceptor (β3-AR) has been shown to promote myocardial apoptosis. However, the exact physiological role and importance of this receptor in the human myocardium, and its underlying mode of action, have not been fully elucidated. The present study aimed to determine the effects of β3-AR on the promotion of myocardial apoptosis and on norepinephrine (NE) injury. We analyzed NE-induced cardiomyocyte (CM) apoptosis by using a TUNEL and an annexin V/propidium iodide apoptosis assay. Furthermore, we investigated the NE-induced expression of the apoptosis marker genes Akt and p38MAPK, their phosphorylated counterparts p-Akt and p-p38MAPK, caspase-3, Bcl-2, and Bax. In addition, we determined the effect of a 48-h treatment with a β3-AR agonist and antagonist on expression of these marker genes. β3-AR overexpression was found to increase CM apoptosis, accompanied by an increased expression of caspase-3, bax/bcl-2, and p-p38MAPK. In contrast, the β3-blocker reduced apoptosis of CMs and the associated elevated Akt expression. We identified a novel and potent anti-apoptosis mechanism via the PI3K/Akt pathway and a pro-apoptosis pathway mediated by p38MAPK.
Adrenergic Agonists
;
pharmacology
;
Adrenergic Antagonists
;
pharmacology
;
Animals
;
Apoptosis
;
Cells, Cultured
;
Myocytes, Cardiac
;
drug effects
;
metabolism
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Adrenergic, beta-3
;
genetics
;
metabolism
;
Signal Transduction
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
10.Effect of panax notoginseng saponins injection on the p38MAPK pathway in lung tissue in a rat model of hypoxic pulmonary hypertension.
Shan ZHAO ; Meng-xiao ZHENG ; Hai-e CHEN ; Cheng-yun WU ; Wan-tie WANG
Chinese journal of integrative medicine 2015;21(2):147-151
OBJECTIVETo investigate the effect of panax notoginseng saponins (PNS) injection on pulmonary artery pressure and the expression of p38MAPK in lung tissue of rats subjected to chronic hypoxia.
METHODSThirty adult male Sprague Dawley rats were randomly divided into three groups (ten in each group): rats in control group were exposed to normoxic condition and the rats in hypoxia group and PNS group were subjected to 4-week hypoxia, and PNS injection (50 mg · kg(-1) · d(-1)) was administrated intraperitoneally at 30 min in the PNS group daily before the rats were kept in the hypoxic chamber, while rats in the other two groups received equal dose of normal saline instead. After chronic hypoxia, mean pulmonary artery pressure (mPAP) and mean carotid artery pressure (mCAP) were measured. The heart and lung tissues were harvested, and right ventricle (RV) and left ventricle plus ventricular septum (LV+S) were weighed to calculate the ratio of RV/(LV+S). The expression of p38MAPK mRNA was determined by reverse transcription-polymerase chain reaction, the quantity of phosphorylated p38MAPK (p-p38MAPK) in rat lung tissues and pulmonary arterioles was determined by Western blot and immunohistochemistry.
RESULTSCompared with the control group, mPAP and the ratio of RV/(LV+S) in the hypoxia group were increased, the expression of p-p38MAPK in pulmonary arterioles and p38MAPK mRNA in the lung were higher (P<0.05). The changes of these parameters in the hypoxia group were significantly attenuated by PNS treatment (P<0.05).
CONCLUSIONPNS injection was shown to prevent hypoxic pulmonary hypertension at least partly by regulating p38MAPK pathway.
Animals ; Arterioles ; drug effects ; metabolism ; Blood Pressure ; drug effects ; Blotting, Western ; Carotid Arteries ; drug effects ; physiopathology ; Disease Models, Animal ; Heart Ventricles ; drug effects ; physiopathology ; Hemodynamics ; drug effects ; Hypertension, Pulmonary ; complications ; enzymology ; physiopathology ; Hypoxia ; complications ; enzymology ; physiopathology ; Injections ; Lung ; drug effects ; enzymology ; pathology ; physiopathology ; MAP Kinase Signaling System ; drug effects ; Male ; Panax notoginseng ; chemistry ; Pulmonary Artery ; drug effects ; physiopathology ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley ; Saponins ; administration & dosage ; pharmacology ; p38 Mitogen-Activated Protein Kinases ; genetics ; metabolism

Result Analysis
Print
Save
E-mail