1.Diagnostic value of exhaled volatile organic compounds in pulmonary cystic fibrosis: A systematic review
Xiaoping YU ; Zhixia SU ; Kai YAN ; Taining SHA ; Yuhang HE ; Yanyan ZHANG ; Yujian TAO ; Hong GUO ; Guangyu LU ; Weijuan GONG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):223-229
Objective To explore the diagnostic value of exhaled volatile organic compounds (VOCs) for cystic fibrosis (CF). Methods A systematic search was conducted in PubMed, EMbase, Web of Science, Cochrane Library, CNKI, Wanfang, VIP, and SinoMed databases up to August 7, 2024. Studies that met the inclusion criteria were selected for data extraction and quality assessment. The quality of included studies was assessed by the Newcastle-Ottawa Scale (NOS), and the risk of bias and applicability of included prediction model studies were assessed by the prediction model risk of bias assessment tool (PROBAST). Results A total of 10 studies were included, among which 5 studies only identified specific exhaled VOCs in CF patients, and another 5 developed 7 CF risk prediction models based on the identification of VOCs in CF. The included studies reported a total of 75 exhaled VOCs, most of which belonged to the categories of acylcarnitines, aldehydes, acids, and esters. Most models (n=6, 85.7%) only included exhaled VOCs as predictive factors, and only one model included factors other than VOCs, including forced expiratory flow at 75% of forced vital capacity (FEF75) and modified Medical Research Council scale for the assessment of dyspnea (mMRC). The accuracy of the models ranged from 77% to 100%, and the area under the receiver operating characteristic curve ranged from 0.771 to 0.988. None of the included studies provided information on the calibration of the models. The results of the Prediction Model Risk of Bias Assessment Tool (PROBAST) showed that the overall bias risk of all predictive model studies was high, and the overall applicability was unclear. Conclusion The exhaled VOCs reported in the included studies showed significant heterogeneity, and more research is needed to explore specific compounds for CF. In addition, risk prediction models based on exhaled VOCs have certain value in the diagnosis of CF, but the overall bias risk is relatively high and needs further optimization from aspects such as model construction and validation.
2.Effects of coal mine dust on lung function in rats
LIU Yang ; LI Meng ; LU Liyuan ; WANG Ru ; YANG He ; ZHANG Huifang
Journal of Preventive Medicine 2025;37(1):96-101
Objective:
To explore the impacts of coal mine dust on lung function in rats, so as to provide the basis for the early prevention and treatment of coal worker's pneumoconiosis.
Methods:
Seventy-two SPF-grade 8-week-old male Sprague-Dawley rats were randomly divided into the coal dust group, the coal-silica dust group, the silica dust group and the control group. The rats in the first three groups of rats were administered 1 mL corresponding dust suspension into the lungs using non-exposure tracheal instillation, while the rats in the control group were administered 1 mL normal saline. Respiratory rate (f), forced vital capacity (FVC), peak expiratory flow (PEF) and dynamic pulmonary compliance (Cdyn) were measured at 1, 3 and 6 months after dust exposure. Lung tissues were collected to measure reactive oxygen species (ROS) and adenosine triphosphate (ATP) levels using corresponding ELISA kits and ATP assay kits, respectively. The relative mRNA expressions of peroxisome proliferators-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitochondrial transcription factor A (TFAM) were detected using real-time fluorescent quantitative polymerase chain reaction assay. The relative protein expressions of PGC-1α and TFAM were detected using Western blotting.
Results:
There was no interaction between dust type and exposure duration on f (P>0.05), but there were interactions on FVC, PEF and Cdyn (all P<0.05). Compared with the control group at 6 months after dust exposure, the f of the rats in the silica dust group were increased, while the FVC and PEF of the rats in the coal-silica dust and silica dust groups were decreased, and Cdyn of the rats in the coal dust, coal-silica dust and silica dust groups were decreased (all P<0.05). There were interactions between dust type and exposure duration on ROS and ATP levels, the relative mRNA and protein expressions of PGC-1α and TFAM (all P<0.05). Compared with the control group at 3 and 6 months after dust exposure, the ROS levels in the rats in the coal dust, coal-silica dust and silica dust groups were increased, while the ATP levels, the relative mRNA and protein expressions of PGC-1α and TFAM were decreased (all P<0.05).
Conclusion
The lung function impairment in rats caused by different types of coal mine dust is related to PGC-1α-mediated mitochondrial biogenesis dysfunction, which leads to increased ROS levels, decreased ATP and TFAM levels.
3.Advances in the application of digital technology in orthodontic monitoring
WANG Qi ; LUO Ting ; LU Wei ; ZHAO Tingting ; HE Hong ; HUA Fang
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(1):75-81
During orthodontic treatment, clinical monitoring of patients is a crucial factor in determining treatment success. It aids in timely problem detection and resolution, ensuring adherence to the intended treatment plan. In recent years, digital technology has increasingly permeated orthodontic clinical diagnosis and treatment, facilitating clinical decision-making, treatment planning, and follow-up monitoring. This review summarizes recent advancements in digital technology for monitoring orthodontic tooth movement, related complications, and appliance-wearing compliance. It aims to provide insights for researchers and clinicians to enhance the application of digital technology in orthodontics, improve treatment outcomes, and optimize patient experience. The digitization of diagnostic data and the visualization of dental models make chair-side follow-up monitoring more convenient, accurate, and efficient. At the same time, the emergence of remote monitoring technology allows orthodontists to promptly identify oral health issues in patients and take corresponding measures. Furthermore, the multimodal data fusion method offers valuable insights into the monitoring of the root-alveolar relationship. Artificial intelligence technology has made initial strides in automating the identification of orthodontic tooth movement, associated complications, and patient compliance evaluation. Sensors are effective tools for monitoring patient adherence and providing data-driven support for clinical decision-making. The application of digital technology in orthodontic monitoring holds great promise. However, challenges like technical bottlenecks, ethical considerations, and patient acceptance remain.
4.Application of Huangkui Capsules in Diabetic Kidney Disease: A Review
Jia LUO ; Beile JIANG ; Qiuxiang HE ; Shilong LU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):314-324
Diabetic kidney disease (DKD) is a kidney disease caused by hyperglycemia,which is one of the most common microvascular complications of diabetes. Due to the high incidence of diabetes,the incidence of DKD has also increased year by year,and DKD has become a global public health problem. The pathogenesis of DKD is related to mechanisms such as oxidative stress,inflammation,renal fibrosis,and decreased mitophagy activity,which are developed under a variety of complex mechanisms. In traditional Chinese medicine,it is believed that the incidence of DKD is closely related to damp heat. Therefore,it is necessary to grasp the treatment method of clearing heat and removing dampness in clinical medication. Huangkui Capsules (HKC) have the effect of clearing damp heat,detoxifying, and detumescence. Because of its unique curative effect on DKD,HKC is often used in the treatment of DKD. HKC plays a role in the treatment of DKD with a variety of pharmacokinetic and pharmacodynamic processes. In many laboratory studies,it has been found that the specific mechanisms of HKC in the treatment of DKD include increasing mitophagy,reducing mitochondrial damage,reducing renal fibrosis,controlling inflammatory response,and inhibiting oxidative stress,which can achieve the purpose of reducing renal damage and promoting renal function. Some clinical studies have also verified that the application of HKC alone can exert renal protective function through anti-inflammatory,anti-oxidative stress,anti-renal fibrosis effects,as well as reduction of urinary protein. Since DKD is not a single injury of renal function,it is often accompanied by problems in blood pressure,blood lipids,blood circulation,body immunity, and other aspects. Therefore,the combination of HKC with other drugs can often achieve more comprehensive results,improve the advantages of various drugs,and improve the therapeutic effect. The combination of drugs such as antihypertensive,lipid-lowering, vascular circulation improvement,immunity inhibition,and anti-oxidative stress with HKC has achieved good results. In addition,HKC is often used in combination with other Chinese patent medicines in clinics. The application of HKC in the treatment of DKD has made some progress,but there are still many places worthy of further study,and the research on the mechanism of HKC is not comprehensive enough. The research on its long-term effect and safety in clinical application is relatively lacking,and the drug variety is relatively single when combined with certain drugs. These problems deserve further attention. Finally,it is necessary to pay attention to the promotion and application of HKC in clinical practice so that HKC can be better applied in clinical practice and better solve practical problems for patients.
5.Application of Huangkui Capsules in Diabetic Kidney Disease: A Review
Jia LUO ; Beile JIANG ; Qiuxiang HE ; Shilong LU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):314-324
Diabetic kidney disease (DKD) is a kidney disease caused by hyperglycemia,which is one of the most common microvascular complications of diabetes. Due to the high incidence of diabetes,the incidence of DKD has also increased year by year,and DKD has become a global public health problem. The pathogenesis of DKD is related to mechanisms such as oxidative stress,inflammation,renal fibrosis,and decreased mitophagy activity,which are developed under a variety of complex mechanisms. In traditional Chinese medicine,it is believed that the incidence of DKD is closely related to damp heat. Therefore,it is necessary to grasp the treatment method of clearing heat and removing dampness in clinical medication. Huangkui Capsules (HKC) have the effect of clearing damp heat,detoxifying, and detumescence. Because of its unique curative effect on DKD,HKC is often used in the treatment of DKD. HKC plays a role in the treatment of DKD with a variety of pharmacokinetic and pharmacodynamic processes. In many laboratory studies,it has been found that the specific mechanisms of HKC in the treatment of DKD include increasing mitophagy,reducing mitochondrial damage,reducing renal fibrosis,controlling inflammatory response,and inhibiting oxidative stress,which can achieve the purpose of reducing renal damage and promoting renal function. Some clinical studies have also verified that the application of HKC alone can exert renal protective function through anti-inflammatory,anti-oxidative stress,anti-renal fibrosis effects,as well as reduction of urinary protein. Since DKD is not a single injury of renal function,it is often accompanied by problems in blood pressure,blood lipids,blood circulation,body immunity, and other aspects. Therefore,the combination of HKC with other drugs can often achieve more comprehensive results,improve the advantages of various drugs,and improve the therapeutic effect. The combination of drugs such as antihypertensive,lipid-lowering, vascular circulation improvement,immunity inhibition,and anti-oxidative stress with HKC has achieved good results. In addition,HKC is often used in combination with other Chinese patent medicines in clinics. The application of HKC in the treatment of DKD has made some progress,but there are still many places worthy of further study,and the research on the mechanism of HKC is not comprehensive enough. The research on its long-term effect and safety in clinical application is relatively lacking,and the drug variety is relatively single when combined with certain drugs. These problems deserve further attention. Finally,it is necessary to pay attention to the promotion and application of HKC in clinical practice so that HKC can be better applied in clinical practice and better solve practical problems for patients.
6.Working practices in eliminating the public health crisis caused by viral hepatitis in Hainan Province of China
Weihua LI ; Changfu XIONG ; Taifan CHEN ; Bin HE ; Dapeng YIN ; Xuexia ZENG ; Feng LIN ; Biyu CHEN ; Xiaomei ZENG ; Biao WU ; Juan JIANG ; Lu ZHONG ; Yuhui ZHANG
Journal of Clinical Hepatology 2025;41(2):228-233
In 2022, Hainan provincial government launched the project for the prevention and control of viral hepatitis with the goals of a hepatitis B screening rate of 90%, a diagnostic rate of 90%, and a treatment rate of 80% among people aged 18 years and above by the year 2025, and the main intervention measures include population-based prevention, case screening, antiviral therapy, and health management. As of December 31, 2024, a total of 6.875 million individuals in the general population had been screened for hepatitis B, with a screening rate of 95.6%. A total of 184 710 individuals with positive HBsAg were identified, among whom 156 772 were diagnosed through serological reexamination, resulting in a diagnostic rate of 84.9%. A total of 50 742 patients with chronic hepatitis B were identified, among whom 42 921 had hepatitis B-specific health records established for health management, with a file establishment rate of 84.6%. A total of 31 553 individuals received antiviral therapy, with a treatment rate of 62.2%. A total of 2.503 million individuals at a high risk of hepatitis C were screened, among whom 4 870 tested positive for HCV antibody and 3 858 underwent HCV RNA testing, resulting in a diagnostic rate of 79.2%, and 1 824 individuals with positive HCV RNA were identified, among whom 1 194 received antiviral therapy, with a treatment rate of 65.5%. In addition, 159 301 individuals with negative HBsAg and anti-HBs and an age of 20 — 40 years were inoculated with hepatitis B vaccine free of charge. Through the implementation of the project for the prevention and control of viral hepatitis, a large number of hepatitis patients have been identified, treated, and managed in the province within a short period of time, which significantly accelerates the efforts to eliminate the crisis of viral hepatitis.
7.Identification and molecular biological mechanism study of subtypes caused by ABO*B.01 allele c. 3G>C mutation
Yu ZHANG ; Jie CAI ; Yating LING ; Lu ZHANG ; Meng LI ; Qiang FU ; Chengtao HE
Chinese Journal of Blood Transfusion 2025;38(2):274-279
[Objective] To study on the genotyping of a sample with inconsistent forward and reverse serological tests, and to conduct a pedigree investigation and molecular biological mechanism study. [Methods] The ABO blood group of the proband and his family members were identified using blood group serological method. The ABO gene exon 1-7 of samples of the proband and his family were sequenced by Sanger and single molecule real-time sequencing (SMRT). DeepTMHMM was used to predict and analyze the transmembrane region of proteins before and after mutation. [Results] The proband and his mother have the Bw phenotype, while his maternal grandfather has ABw phenotype. The blood group results of forward and reverse typing of other family members were consistent. ABO gene sequencing results showed that there was B new mutation of c.3 G>C in exon 1 of ABO gene in the proband, his mother and grandfather, leading to a shift in translation start site. DeepTMHMM analysis indicated that the shift in the translation start site altered the protein topology. [Conclusion] The c.3G>C mutation in the first exon of the ABO gene leads to a shift in the translation start site, altering the protein topology from an α-transmembrane region to a spherical signaling peptide, reducing enzyme activity and resulting in the Bw serological phenotype.
8.Effect of the reduction of back optic zone diameters of orthokeratology lenses on corneal higher-order aberrations
Dandan ZHAO ; Yubing ZHAO ; Yang HE ; Shengrong LU ; Yuan YUAN
International Eye Science 2025;25(2):213-219
AIM: To investigate the alterations in corneal aberration and relative refractive power following the reduction of back optic zone diameters(BOZD)of orthokeratology lenses.METHODS: Myopic children aged 8-12 years, deemed suitable and willing to wear orthokeratology lenses, were randomly allocated to wear lenses with a 6.0 mm BOZD or a 5.0 mm BOZD. Data collection included changes in higher-order aberrations, relative refractive power and the treatment zone diameter of the two groups after wearing lenses for 1 d, 1 wk, 1, and 3 mo. The correlation of increase in corneal higher-order aberrations with refractive power was analyzed.RESULTS: The increases in total higher-order aberrations, spherical aberrations and coma aberrations varied over time following lens wear(all P<0.001), and there were no statistically significant differences in the changes of total higher-order aberrations and coma aberrations between the two groups of patients(all P>0.05). A significant difference was observed in the increment of spherical aberrations in the 5 mm range between the two groups of patients, which varied over time(Ftime=40.179, Ptime<0.001; Fgroup=11.948, Pgroup=0.001; Finteraction=3.262, Pinteraction=0.03). A significant difference was observed in the increment of spherical aberrations in the 4 mm range between the two patient groups(Ftime=34.462, Ptime<0.001; Fgroup=13.094, Pgroup<0.001; Finteraction=1.372, Pinteraction=0.25). There was no statistically significant distinction in relative refractive power between the two groups(Fgroup=0.048, Pgroup=0.83; Finteraction=1.208, Pinteraction=0.31); however, relative refractive power changed over time(Ftime=40.030, Ptime<0.001). The difference in treatment zone diameter between the two groups was statistically significant, with changes over time(Ftime=11.212, Ptime<0.001; Fgroup=74.073, Pgroup<0.001; Finteraction=0.312, Pinteraction=0.82). The total higher-order aberrations, spherical aberrations, and coma aberrations in 4, 5 and 6 mm range showed a positive correlation with relative refractive power values(all P<0.001). Statistically significant difference was observed in the axial length between the two groups after wearing lenses for 3, 6 and 12 mo(Ftime=185.398, Ptime<0.001; Fgroup=5.618, Pgroup=0.02; Finteraction=2.315, Pinteraction=0.11).CONCLUSION: Orthokeratology lenses leaded to elevated higher-order aberrations. Orthokeratology lenses with smaller BOZD produced significantly greater spherical aberrations at 4 and 5 mm range and smaller treatment zone diameters. The corneal total higher-order aberration was positively correlated with relative refractive power. Wearing orthokeratology lenses with a smaller BOZD can cause slower axial growth and better myopia control.
9.Molecular mechanisms of ligament flavum hypertrophy:analysis based on methylation sequencing and transcriptome integration
Yang HE ; Buyuan TANG ; Changhuai LU
Chinese Journal of Tissue Engineering Research 2025;29(5):1013-1020
BACKGROUND:Ligament flavum hypertrophy is the main cause of lumbar spinal stenosis,which is the result of multiple pathological factors working together.Currently,the molecular mechanism and pathway of action of ligament flavum hypertrophy are unclear,and there is a lack of effective non-surgical treatment options. OBJECTIVE:To investigate the molecular mechanisms of ligament flavum hypertrophy using methylation sequencing and transcriptome integration analysis methods. METHODS:Five normal ligament flavum tissue samples and five hypertrophic ligament flavum tissue samples were collected.Abnormal methylation sites and methylation status were recorded by methylation sequencing and abnormally expressed genes were recorded by transcriptome integration analysis.The genes that showed a negative correlation between methylation level and expression level at the intersection of the two were selected.GO and KEGG enrichment analyses were used to study the major functional pathways and molecular functions of differentially expressed genes.Key genes regulating ligamentum flavum hypertrophy were screened using protein-protein interaction analysis. RESULTS AND CONCLUSION:Methylation sequencing of the two groups of the ligament flavum showed 37 173 hypermethylation sites and 10 583 low methylation sites.Transcriptome integration analysis found 720 abnormally expressed genes,of which 463 were upregulated and 257 were down-regulated.There were 383 overlapping genes,of which 192 genes showed a negative correlation between the methylation level and the expression level.GO functional pathway analysis results showed that molecular function was enriched to 10 terms,cellular component was enriched to 15 terms,and biological process(BP)was enriched to 30 terms.The results of KEGG pathway enrichment analysis showed that 192 genes were mainly enriched to 9 pathways,such as PI3K-Akt signaling pathway,Rap1 signaling pathway,and focal adhesion signaling pathway.The protein-protein interaction analysis identified five genes,PPARG,EGFR,CNR1,TNF and COL11A2,which may be the key genes that regulate ligamentum flavum hypertrophy,and they can influence the occurrence and development of ligamentum flavum hypertrophy mainly through the regulation of tissue fibrosis,cell proliferation and differentiation,inflammatory factor levels,and collagen fiber expression.
10.Identification and drug sensitivity analysis of key molecular markers in mesenchymal cell-derived osteosarcoma
Haojun ZHANG ; Hongyi LI ; Hui ZHANG ; Haoran CHEN ; Lizhong ZHANG ; Jie GENG ; Chuandong HOU ; Qi YU ; Peifeng HE ; Jinpeng JIA ; Xuechun LU
Chinese Journal of Tissue Engineering Research 2025;29(7):1448-1456
BACKGROUND:Osteosarcoma has a complex pathogenesis and a poor prognosis.While advancements in medical technology have led to some improvements in the 5-year survival rate,substantial progress in its treatment has not yet been achieved. OBJECTIVE:To screen key molecular markers in osteosarcoma,analyze their relationship with osteosarcoma treatment drugs,and explore the potential disease mechanisms of osteosarcoma at the molecular level. METHODS:GSE99671 and GSE284259(miRNA)datasets were obtained from the Gene Expression Omnibus database.Differential gene expression analysis and Weighted Gene Co-expression Network Analysis(WGCNA)on GSE99671 were performed.Functional enrichment analysis was conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes separately for the differentially expressed genes and the module genes with the highest positive correlation to the disease.The intersection of these module genes and differentially expressed genes was taken as key genes.A Protein-Protein Interaction network was constructed,and correlation analysis on the key genes was performed using CytoScape software,and hub genes were identified.Hub genes were externally validated using the GSE28425 dataset and text validation was conducted.The drug sensitivity of hub genes was analyzed using the CellMiner database,with a threshold of absolute value of correlation coefficient|R|>0.3 and P<0.05. RESULTS AND CONCLUSION:(1)Differential gene expression analysis identified 529 differentially expressed genes,comprising 177 upregulated and 352 downregulated genes.WGCNA analysis yielded a total of 592 genes with the highest correlation to osteosarcoma.(2)Gene Ontology enrichment results indicated that the development of osteosarcoma may be associated with extracellular matrix,bone cell differentiation and development,human immune regulation,and collagen synthesis and degradation.Kyoto Encyclopedia of Genes and Genomes enrichment results showed the involvement of pathways such as PI3K-Akt signaling pathway,focal adhesion signaling pathway,and immune response in the onset of osteosarcoma.(3)The intersection analysis revealed a total of 59 key genes.Through Protein-Protein Interaction network analysis,8 hub genes were selected,which were LUM,PLOD1,PLOD2,MMP14,COL11A1,THBS2,LEPRE1,and TGFB1,all of which were upregulated.(4)External validation revealed significantly downregulated miRNAs that regulate the hub genes,with hsa-miR-144-3p and hsa-miR-150-5p showing the most significant downregulation.Text validation results demonstrated that the expression of hub genes was consistent with previous research.(5)Drug sensitivity analysis indicated a negative correlation between the activity of methotrexate,6-mercaptopurine,and pazopanib with the mRNA expression of PLOD1,PLOD2,and MMP14.Moreover,zoledronic acid and lapatinib showed a positive correlation with the mRNA expression of PLOD1,LUM,MMP14,PLOD2,and TGFB1.This suggests that zoledronic acid and lapatinib may be potential therapeutic drugs for osteosarcoma,but further validation is required through additional basic experiments and clinical studies.


Result Analysis
Print
Save
E-mail