1.Construction of a system for isolation and purification of NK cells from whole blood donations
Tengyu CAO ; Huayu LIN ; Xuanzhi ZHANG ; Cuimi DUAN ; Yi LIU ; Xiaonan XUE ; Liping SUN ; Yang YU
Chinese Journal of Blood Transfusion 2025;38(2):181-188
[Objective] To explore the feasibility of using whole blood as a source of NK cells for allogeneic CAR NK cell therapy and activated NK cell reinfusion therapy, and initially construct a technical system for the separation and purification of NK cells from whole blood. [Methods] All peripheral blood mononuclear cells (PBMCs) were enriched from 400 mL of whole blood by manual separation and machine separation, respectively. The erythrocyte loss rate, PBMCs number, NK cell purity of the two methods were compared. NK cells were sorted from PBMCs by three separation and enrichment methods as immunomagnetic bead negative selection method, platelet lysate culture expansion and PERCOLL density gradient separation method, and the purity and yield of NK cells, the activity of NK cells and the tumor-killing ability of the three separation and enrichment methods were compared. [Results] The proportion of NK cells in the lymphocyte population was higher in the manual separation method than in the machine separation method[(13.16±5.16)% vs (8.56±3.92)%, P<0.05]; the number PBMCs was lower in the manual separation method than in the machine separation method[(4.09±1.80)×108vs (6.49±2.16)×108, P<0.05], and there was no difference in the red blood cell loss between the two methods (P>0.05). The purity of NK cells isolated and enriched from PBMCs by manual separation method using immunomagnetic was (96.77±2.31)%; the yield was (56.27±10.47)%; the inhibition of tumor proliferation was (38.67±14.05)%; and the tumor killing rate was (19.90±8.05)%. The purity of NK cells isolated and enriched from PBMCs by manual separation method using platelet lysis culture expansion method was the highest at day 7, which was (54.84±15.80)%; the cell expansion multiple could reach 16.92±6.28 at day 7; the in vitro tumor killing rate of NK cells was (15.83±5.5)%; the tumor inhibition rate was (44.33±13.5)%; and there was no difference in the toxicity and activity of NK cells between the two methods (P>0.05). The purity of NK cells isolated and enriched by PERCOLL density gradient separation method was (15.83±5.82)%, and the yield was (14±6.25)%, which was significantly lower than the other two methods. [Conclusion] PBMCs isolated from whole blood by manual separation and NK cells enriched by negative selection with immunomagnetic beads have the potential to provide NK cell materials for CAR-NK cell therapy, and NK cells enriched by platelet lysate-conditioned medium have the potential to provide NK cells for large-scale NK cell activation reinfusion therapy.
2.Severity Assessment Parameters and Diagnostic Technologies of Obstructive Sleep Apnea
Zhuo-Zhi FU ; Ya-Cen WU ; Mei-Xi LI ; Ping-Ping YIN ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(1):147-161
Obstructive sleep apnea (OSA) is an increasingly widespread sleep-breathing disordered disease, and is an independent risk factor for many high-risk chronic diseases such as hypertension, coronary heart disease, stroke, arrhythmias and diabetes, which is potentially fatal. The key to the prevention and treatment of OSA is early diagnosis and treatment, so the assessment and diagnostic technologies of OSA have become a research hotspot. This paper reviews the research progresses of severity assessment parameters and diagnostic technologies of OSA, and discusses their future development trends. In terms of severity assessment parameters of OSA, apnea hypopnea index (AHI), as the gold standard, together with the percentage of duration of apnea hypopnea (AH%), lowest oxygen saturation (LSpO2), heart rate variability (HRV), oxygen desaturation index (ODI) and the emerging biomarkers, constitute a multi-dimensional evaluation system. Specifically, the AHI, which measures the frequency of sleep respiratory events per hour, does not fully reflect the patients’ overall sleep quality or the extent of their daytime functional impairments. To address this limitation, the AH%, which measures the proportion of the entire sleep cycle affected by apneas and hypopneas, deepens our understanding of the impact on sleep quality. The LSpO2 plays a critical role in highlighting the potential severe hypoxic episodes during sleep, while the HRV offers a different perspective by analyzing the fluctuations in heart rate thereby revealing the activity of the autonomic nervous system. The ODI provides a direct and objective measure of patients’ nocturnal oxygenation stability by calculating the number of desaturation events per hour, and the biomarkers offers novel insights into the diagnosis and management of OSA, and fosters the development of more precise and tailored OSA therapeutic strategies. In terms of diagnostic techniques of OSA, the standardized questionnaire and Epworth sleepiness scale (ESS) is a simple and effective method for preliminary screening of OSA, and the polysomnography (PSG) which is based on recording multiple physiological signals stands for gold standard, but it has limitations of complex operations, high costs and inconvenience. As a convenient alternative, the home sleep apnea testing (HSAT) allows patients to monitor their sleep with simplified equipment in the comfort of their own homes, and the cardiopulmonary coupling (CPC) offers a minimal version that simply analyzes the electrocardiogram (ECG) signals. As an emerging diagnostic technology of OSA, machine learning (ML) and artificial intelligence (AI) adeptly pinpoint respiratory incidents and expose delicate physiological changes, thus casting new light on the diagnostic approach to OSA. In addition, imaging examination utilizes detailed visual representations of the airway’s structure and assists in recognizing structural abnormalities that may result in obstructed airways, while sound monitoring technology records and analyzes snoring and breathing sounds to detect the condition subtly, and thus further expands our medical diagnostic toolkit. As for the future development directions, it can be predicted that interdisciplinary integrated researches, the construction of personalized diagnosis and treatment models, and the popularization of high-tech in clinical applications will become the development trends in the field of OSA evaluation and diagnosis.
3.Acute Inflammatory Pain Induces Sex-different Brain Alpha Activity in Anesthetized Rats Through Optically Pumped Magnetometer Magnetoencephalography
Meng-Meng MIAO ; Yu-Xuan REN ; Wen-Wei WU ; Yu ZHANG ; Chen PAN ; Xiang-Hong LIN ; Hui-Dan LIN ; Xiao-Wei CHEN
Progress in Biochemistry and Biophysics 2025;52(1):244-257
ObjectiveMagnetoencephalography (MEG), a non-invasive neuroimaging technique, meticulously captures the magnetic fields emanating from brain electrical activity. Compared with MEG based on superconducting quantum interference devices (SQUID), MEG based on optically pump magnetometer (OPM) has the advantages of higher sensitivity, better spatial resolution and lower cost. However, most of the current studies are clinical studies, and there is a lack of animal studies on MEG based on OPM technology. Pain, a multifaceted sensory and emotional phenomenon, induces intricate alterations in brain activity, exhibiting notable sex differences. Despite clinical revelations of pain-related neuronal activity through MEG, specific properties remain elusive, and comprehensive laboratory studies on pain-associated brain activity alterations are lacking. The aim of this study was to investigate the effects of inflammatory pain (induced by Complete Freund’s Adjuvant (CFA)) on brain activity in a rat model using the MEG technique, to analysis changes in brain activity during pain perception, and to explore sex differences in pain-related MEG signaling. MethodsThis study utilized adult male and female Sprague-Dawley rats. Inflammatory pain was induced via intraplantar injection of CFA (100 μl, 50% in saline) in the left hind paw, with control groups receiving saline. Pain behavior was assessed using von Frey filaments at baseline and 1 h post-injection. For MEG recording, anesthetized rats had an OPM positioned on their head within a magnetic shield, undergoing two 15-minute sessions: a 5-minute baseline followed by a 10-minute mechanical stimulation phase. Data analysis included artifact removal and time-frequency analysis of spontaneous brain activity using accumulated spectrograms, generating spectrograms focused on the 4-30 Hz frequency range. ResultsMEG recordings in anesthetized rats during resting states and hind paw mechanical stimulation were compared, before and after saline/CFA injections. Mechanical stimulation elevated alpha activity in both male and female rats pre- and post-saline/CFA injections. Saline/CFA injections augmented average power in both sexes compared to pre-injection states. Remarkably, female rats exhibited higher average spectral power 1 h after CFA injection than after saline injection during resting states. Furthermore, despite comparable pain thresholds measured by classical pain behavioral tests post-CFA treatment, female rats displayed higher average power than males in the resting state after CFA injection. ConclusionThese results imply an enhanced perception of inflammatory pain in female rats compared to their male counterparts. Our study exhibits sex differences in alpha activities following CFA injection, highlighting heightened brain alpha activity in female rats during acute inflammatory pain in the resting state. Our study provides a method for OPM-based MEG recordings to be used to study brain activity in anaesthetized animals. In addition, the findings of this study contribute to a deeper understanding of pain-related neural activity and pain sex differences.
4.Palpitations, Shortness of Breath, Weakness in Limbs, Edema, and Dyspnea: A Rare Inflammatory Myopathy with Positive Aniti-mitochondrial Antibodies and Cardiac Involvement
Chunsu LIANG ; Xuchang ZHANG ; Ning ZHANG ; Lin KANG ; Xiaohong LIU ; Jiaqi YU ; Yingxian LIU ; Lin QIAO ; Yanli YANG ; Xiaoyi ZHAO ; Ruijie ZHAO ; Na NIU ; Xuelian YAN
Medical Journal of Peking Union Medical College Hospital 2025;16(1):248-255
This article presents a case study of a patient who visited the Geriatric Department of Peking Union Medical College Hospital due to "palpitations, shortness of breath for more than 2 years, limb weakness for 6 months, edema, and nocturnal dyspnea for 2 months". The patient exhibited decreased muscle strength in the limbs and involvement of swallowing and respiratory muscles, alongside complications of heart failure and various arrhythmias which were predominantly atrial. Laboratory tests revealed the presence of multiple autoantibodies and notably anti-mitochondrial antibodies. Following a comprehensive multidisciplinary evaluation, the patient was diagnosed with anti-mitochondrial antibody-associated inflammatory myopathy. Treatment involved a combination of glucocorticoids and immunosuppressants, along with resistance exercises for muscle strength and rehabilitation training for lung function, resulting in significant improvement of clinical symptoms. The case underscores the importance of collaborative multidisciplinary approaches in diagnosing and treating rare diseases in elderly patients, where careful consideration of clinical manifestations and subtle abnormal clinical data can lead to effective interventions.
5.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
6.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
7.Exercise Ameliorates Chronic Restraint Stress-induced Anxiety via PVN CRH Neurons
Jing CHEN ; Cong-Cong CHEN ; Kai-Na ZHANG ; Yu-Lin LAI ; Yang ZOU
Progress in Biochemistry and Biophysics 2025;52(2):501-512
ObjectiveTo investigate the role of paraventricular nucleus (PVN) corticotropin releasing hormone (CRH) neurons in chronic restraint stress (CRS)-induced anxiety-like behavior. And whether exercise relieves chronic restraint stress-induced anxiety through PVN CRH neurons. MethodsTwenty 8-week-old male C57BL/6J mice were randomly divided into control (Ctrl) group and chronic restraint stress (CRS) group. The open field test (OFT) and elevated plus maze (EPM) were used to evaluate anxiety-like behavior of the mice. Food intake was recorded after CRS. Immunofluorescence staining was used to label the expression of c-Fos expression in PVN and calculate the co-expression of c-Fos and CRH neurons. We used chemogenetic activation of PVN CRH neurons to observed the anxiety-like behavior. 8-week treadmill training (10-16 m/min, 60 min/d, 6 d/week) were used to explore the role of exercise in ameliorating CRS-induced anxiety behavior and how PVN CRH neurons involved in it. ResultsCompared with Ctrl group, CRS group exhibited significant anxiety-like behavior. In OFT, the mice in CRS groups spent less time in center area (P<0.001). In EPM, the time in open arm in CRS group were significantly decreased (P<0.001). Besides, food intake was also suppressed in CRS group compared with Ctrl group (P<0.05). Compared with Ctrl group, CRS significantly increase c-Fos expression in PVN and most of CRH neurons co-express c-Fos (P<0.001). Chemogenetic activation of PVN CRH neurons induced anxiety-like behavior (P<0.05) and inhibited feeding behavior (P<0.01). Exercise relieves chronic restraint stress-induced anxiety (P<0.001) and relieved the anorexia caused by chronic restraint stress (P<0.05). Aerobic exercise inhibited the CRS labeled c-Fos in PVN CRH neurons (P<0.001). Furthermore, ablation of PVN CRH neurons attenuated CRS induced anxiety-like behavior. ConclusionCRS activated PVN CRH neurons, induced anxiety-like behavior and reduced food intake. 8-week exercise attenuated CRS-induced anxiety-like behavior through inhibiting PVN CRH neuron. Ablation of CRH PVN neurons ameliorated CRS-induced anxiety-like behavior. These finding reveals a potential neural mechanism of exercise-relieving CRS-induced anxiety-like behavior. This provides a new idea and theoretical basis for the treatment of anxiety and related mental disorders.
8.Effects of polylactic acid-glycolic acid copolymer/lysine-grafted graphene oxide nanoparticle composite scaffolds on osteogenic differentiation of MC3T3 cells
Shuangqi YU ; Fan DING ; Song WAN ; Wei CHEN ; Xuejun ZHANG ; Dong CHEN ; Qiang LI ; Zuoli LIN
Chinese Journal of Tissue Engineering Research 2025;29(4):707-712
BACKGROUND:How to effectively promote bone regeneration and bone reconstruction after bone injury has always been a key issue in clinical bone repair research.The use of biological and degradable materials loaded with bioactive factors to treat bone defects has excellent application prospects in bone repair. OBJECTIVE:To investigate the effect of polylactic acid-glycolic acid copolymer(PLGA)composite scaffold modified by lysine-grafted graphene oxide nanoparticles(LGA-g-GO)on osteogenic differentiation and new bone formation. METHODS:PLGA was dissolved in dichloromethane and PLGA scaffold was prepared by solvent evaporation method.PLGA/GO composite scaffolds were prepared by dispersing graphene oxide uniformly in PLGA solution.LGA-g-GO nanoparticles were prepared by chemical grafting method,and the PLGA/LGA-g-GO composite scaffolds were constructed by blending LGA-g-GO nanoparticles at different mass ratios(1%,2%,and 3%)with PLGA.The micromorphology,hydrophilicity,and protein adsorption capacity of scaffolds of five groups were characterized.MC3T3 cells were inoculated on the surface of scaffolds of five groups to detect cell proliferation and osteogenic differentiation. RESULTS AND CONCLUSION:(1)The surface of PLGA scaffolds was smooth and flat under scanning electron microscope,while the surface of the other four scaffolds was rough.The surface roughness of the composite scaffolds increased with the increase of the addition of LGA-g-GO nanoparticles.The water contact angle of PLGA/LGA-g-GO(3%)composite scaffolds was lower than that of the other four groups(P<0.05).The protein adsorption capacity of PLGA/LGA-g-GO(1%,2%,and 3%)composite scaffolds was stronger than PLGA and PLGA/GO scaffolds(P<0.05).(2)CCK-8 assay showed that PLGA/LGA-g-GO(2%,3%)composite scaffold could promote the proliferation of MC3T3 cells.Alkaline phosphatase staining and alizarin red staining showed that the cell alkaline phosphatase activity in PLGA/LGA-g-GO(2%,3%)group was higher than that in the other three groups(P<0.05).The calcium deposition in the PLGA/GO and PLGA/LGA-g-GO(1%,2%,and 3%)groups was higher than that in the PLGA group(P<0.05).(3)In summary,PLGA/LGA-g-GO composite scaffold can promote the proliferation and osteogenic differentiation of osteoblasts,and is conducive to bone regeneration and bone reconstruction after bone injury.
9.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
10.Efficacy of Fufang Lingjiao Jiangya Pills with Different Proportions of Goat Horn Replacing Antelope Horn on Spontaneous Hypertensive Rats
Tengjian WANG ; Wanlu ZHAO ; Yang YU ; Yan LIU ; Kun CAO ; Zheyuan LIN ; Yue WU ; Lilan LUO ; Weizhi LAI ; Zhaohuan LOU ; Qiaoyan ZHANG ; Quanlong ZHANG ; Luping QIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):68-78
ObjectiveTo investigate the optimal ratio of goat horn replacing antelope horn in Fufang Lingjiao Jiangya pills and the blood pressure-lowering mechanism of this medicine. MethodsThe blood pressure-lowering efficacy of Fufang Lingjiao Jiangya pills with varying proportions of goat horn replacing antelope horn was evaluated on spontaneous hypertensive rats (SHR). In this experiment, 50 SHR rats were randomly grouped as follows: model (n=8), captopril (0.01 g·kg-1) (n=6), low-dose blank Fufang Lingjiao Jiangya pills (0.342 g·kg-1) (n=6), high-dose blank Fufang Lingjiao Jiangya pills (0.684 g·kg-1) (n=6), low-dose antelope horn-containing Fufang Lingjiao Jiangya pills (0.378 g·kg-1) (n=6), high-dose antelope horn-containing Fufang Lingjiao Jiangya pills (0.756 g·kg-1) (n=6), low-dose goat horn-containing Fufang Lingjiao Jiangya pills (0.378 g·kg-1) (n=6), and high-dose goat horn-containing Fufang Lingjiao Jiangya pills (0.756 g·kg-1) (n=6). Additionally, 8 WKY rats were used as the normal group. Drugs were administered by gavage for 4 weeks while an equal volume of distilled water was administered for the normal and model groups. Blood pressure was measured before administration, 3 h post administration, and biweekly thereafter. In the experiment for Fufang Lingjiao Jiangya pills with goat horn replacing antelope horn in different proportions, 48 SHR rats were randomly grouped as follows: model, blank Fufang Lingjiao Jiangya pills (0.684 g·kg-1), antelope horn-containing Fufang Lingjiao Jiangya pills (0.756 g·kg-1), 2× goat horn-containing Fufang Lingjiao Jiangya pills (0.824 g·kg-1), 4× goat horn Fufang Lingjiao Jiangya pills (0.969 g·kg-1), and 6× goat horn Fufang Lingjiao Jiangya pills (1.112 g·kg-1). The normal group included 8 WKY rats, and the normal group and model group received an equal volume of distilled water. The treatment lasted for 2 weeks, and blood pressure was recorded at various time points (pre-administration, 3 h post administration, and on days 4, 7, 10, and 14 of administration). Serum levels of angiotensin-converting enzyme (ACE), angiotensin Ⅱ(Ang Ⅱ), renin, and interleukin-6 (IL-6) were measured by enzyme-linked immunosorbent assay. Histopathological changes in the heart, kidney, and thoracic aorta were observed by hematoxylin-eosin staining. The protein levels of ACE2, angiotensin Ⅱ type 1 receptor (AT1R), and angiotensinogen (AGT) in the kidney tissue were determined by Western blot, while the expression of nuclear factor (NF)-κB p65 and Toll-like receptor 4 (TLR4) in the thoracic aorta tissue was assessed by immunohistochemistry. ResultsCompared with the model group, all treatment groups showed lowered blood pressure (P<0.05, P<0.01), and the 6× goat horn-containing Fufang Lingjiao Jiangya pills group showed consistent blood pressure-lowering effect with the antelope horn-containing Fufang Lingjiao Jiangya pills group. Compared with the normal group, the model group showed elevated serum levels of ACE, Ang Ⅱ, renin, and IL-6, while the elevations were declined in the Fufang Lingjiao Jiangya pills groups (P<0.05, P<0.01). Pathological changes in the heart, kidney, and thoracic aorta were alleviated in all the treatment groups, with the 6× goat horn- and antelope horn-containing Fufang Lingjiao Jiangya pills groups exhibited the best effect. Western blot and immunohistochemistry results showed that all the treatment groups exhibited down-regulated protein levels of AT1R, AGT, NF-κB p65, and TLR4 and up-regulated protein levels of ACE2 (P<0.05, P<0.01) compared with model group, with the 6×goat horn- and antelope horn-containing Fufang Lingjiao Jiangya pills groups showcasing the best effect. ConclusionReplacing antelope horn with 6×goat horn in Fufang Lingjiao Jiangya pills can achieve consistent blood pressure-lowering effect with the original prescription. The prescription may exert the effect by inhibiting the renin-angiotensin-aldosterone system (RAAS) and TLR4/NF-κB signaling pathways.

Result Analysis
Print
Save
E-mail