1.Feasibility and safety of transesophageal endoscopic resection for benign mediastinal tumors
Jia YU ; Liyun MA ; Wei SU ; Shengli LIN ; Quanlin LI ; Pinghong ZHOU ; Pingting GAO
Chinese Journal of Clinical Medicine 2025;32(3):362-368
		                        		
		                        			
		                        			Objective To explore the feasibility, safety, and efficacy of transesophageal endoscopic surgery for mediastinal tumors. Methods A retrospective analysis was conducted on the clinical data of 17 patients who underwent transesophageal endoscopic resection for benign mediastinal tumors at the Endoscopy Center of Zhongshan Hospital, Fudan University, between January 1, 2016 and December 31, 2024. Epidemiological characteristics, surgical parameters, adverse events, and follow-up outcomes were analyzed. Results Among the 17 patients, there were 9 males and 8 females, with an average age of (42.4±14.5) years and an average tumor size of (2.6±1.6) cm. Pathological types included esophageal duplication cysts (6 cases, 35.3%), bronchogenic cysts (5 cases, 29.4%), gastroenteric cysts (3 cases, 17.6%), schwannomas (2 cases, 11.8%), and lymphangioma (1 case, 5.9%). Fourteen patients (82.4%) underwent submucosal tunneling endoscopic resection (STER), 3 patients (17.6%) underwent natural orifice transluminal endoscopic mediastinal surgery. All surgeries were successfully completed without conversion to open surgery. En bloc resection was achieved in 11 patients (64.7%), with an average operative time of (60.9±32.6) min. No intraoperative bleeding or mucosal injury occurred, and 4 patients (23.5%) experienced minor complications (pneumothorax, fever, recurrent laryngeal nerve injury), all of which resolved with conservative treatment. The average postoperative hospital stay was (3.2±1.5) days, and no recurrence was observed during the follow-up period. Conclusions Transesophageal endoscopic resection of benign mediastinal tumors is a safe, effective, and minimally invasive treatment method. Further validation of its efficacy and safety through large-scale prospective studies is warranted.
		                        		
		                        		
		                        		
		                        	
2.Molecular Mechanisms of RNA Modification Interactions and Their Roles in Cancer Diagnosis and Treatment
Jia-Wen FANG ; Chao ZHE ; Ling-Ting XU ; Lin-Hai LI ; Bin XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2252-2266
		                        		
		                        			
		                        			RNA modifications constitute a crucial class of post-transcriptional chemical alterations that profoundly influence RNA stability and translational efficiency, thereby shaping cellular protein expression profiles. These diverse chemical marks are ubiquitously involved in key biological processes, including cell proliferation, differentiation, apoptosis, and metastatic potential, and they exert precise regulatory control over these functions. A major advance in the field is the recognition that RNA modifications do not act in isolation. Instead, they participate in complex, dynamic interactions—through synergistic enhancement, antagonism, competitive binding, and functional crosstalk—forming what is now termed the “RNA modification interactome” or “RNA modification interaction network.” The formation and functional operation of this interactome rely on a multilayered regulatory framework orchestrated by RNA-modifying enzymes—commonly referred to as “writers,” “erasers,” and “readers.” These enzymes exhibit hierarchical organization within signaling cascades, often functioning in upstream-downstream sequences and converging at critical regulatory nodes. Their integration is further mediated through shared regulatory elements or the assembly into multi-enzyme complexes. This intricate enzymatic network directly governs and shapes the interdependent relationships among various RNA modifications. This review systematically elucidates the molecular mechanisms underlying both direct and indirect interactions between RNA modifications. Building upon this foundation, we introduce novel quantitative assessment frameworks and predictive disease models designed to leverage these interaction patterns. Importantly, studies across multiple disease contexts have identified core downstream signaling axes driven by specific constellations of interacting RNA modifications. These findings not only deepen our understanding of how RNA modification crosstalk contributes to disease initiation and progression, but also highlight its translational potential. This potential is exemplified by the discovery of diagnostic biomarkers based on interaction signatures and the development of therapeutic strategies targeting pathogenic modification networks. Together, these insights provide a conceptual framework for understanding the dynamic and multidimensional regulatory roles of RNA modifications in cellular systems. In conclusion, the emerging concept of RNA modification crosstalk reveals the extraordinary complexity of post-transcriptional regulation and opens new research avenues. It offers critical insights into the central question of how RNA-modifying enzymes achieve substrate specificity—determining which nucleotides within specific RNA transcripts are selectively modified during defined developmental or pathological stages. Decoding these specificity determinants, shaped in large part by the modification interactome, is essential for fully understanding the biological and pathological significance of the epitranscriptome. 
		                        		
		                        		
		                        		
		                        	
3.High Expression of INF2 Predicts Poor Prognosis and Promotes Hepatocellular Carcinoma Progression
Hai-Biao WANG ; Man LIN ; Fu-Sang YE ; Jia-Xin SHI ; Hong LI ; Meng YE ; Jie WANG
Progress in Biochemistry and Biophysics 2025;52(1):194-208
		                        		
		                        			
		                        			ObjectiveINF2 is a member of the formins family. Abnormal expression and regulation of INF2 have been associated with the progression of various tumors, but the expression and role of INF2 in hepatocellular carcinoma (HCC) remain unclear. HCC is a highly lethal malignant tumor. Given the limitations of traditional treatments, this study explored the expression level, clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets. MethodsIn this study, we used public databases to analyze the expression of INF2 in pan-cancer and HCC, as well as the impact of INF2 expression levels on HCC prognosis. Quantitative real time polymerase chain reaction (RT-qPCR), Western blot, and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues. The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples. Subsequently, the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments. Finally, the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments. ResultsINF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival, liver cirrhosis and pathological differentiation of HCC patients. The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC. In vivo and in vitro HCC models, upregulated expression of INF2 triggers the proliferation and migration of the HCC cell, while knockdown of INF2 could counteract this effect. INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression, thus promoting tumor progression. ConclusionINF2 is highly expressed in HCC and is associated with poor prognosis. High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression, and targeting INF2 may be beneficial for HCC patients with high expression of INF2. 
		                        		
		                        		
		                        		
		                        	
4.Processing History and Modern Research of Jianghuanglian: A Review
Ying LI ; Yun WANG ; Zhe JIA ; Lin YAN ; Min JIN ; Cun ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):275-282
		                        		
		                        			
		                        			Jianghuanglian is one of the representative processed products of Coptidis Rhizoma for treating cold syndrome with drugs of heat nature, and ginger is used to restrict the bitter cold of Coptidis Rhizoma, which can be traced back to Bojifang, and it is suitable for stagnation of damp-heat in middle-jiao, cold-heat mutual knots and other symptoms. Jianghuanglian retains the alkaloids, phenylpropanoids and flavonoids of Coptidis Rhizoma, and also introduces gingerol components such as 6-gingerol in ginger, which has pharmacological activities such as anti-inflammatory, antibacterial, anti-tumor, and improving gastrointestinal function. The 2020 edition of Chinese Pharmacopoeia and many local processing specifications have included the traditional processing process and quality standards of Jianghuanglian, but the specific process parameters and quality standards are incomplete, which limits the production and clinical application of this processed product. By summarizing the processing history, process research, quality evaluation, pharmacodynamic and medicinal property changes and application of Jianghuanglian in the past 20 years, there are differences in the processing methods and standards in various provinces and cities, which are mainly reflected in the preparation method, dosage, processing process and quantitative standards of ginger juice. In addition, there are also certain differences in the changes of the main components of Jianghuanglian prepared from ginger or dried ginger, as well as their efficacy and medicinal properties. The research on the processing process of Jianghuanglian plays an important role in improving its quality standards, and this review can provide a reference for improving the quality evaluation system of Jianghuanglian. 
		                        		
		                        		
		                        		
		                        	
5.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
		                        		
		                        			
		                        			 With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections. 
		                        		
		                        		
		                        		
		                        	
6.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
		                        		
		                        			
		                        			ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine. 
		                        		
		                        		
		                        		
		                        	
7.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
		                        		
		                        			
		                        			 To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC. 
		                        		
		                        		
		                        		
		                        	
8.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
		                        		
		                        			 Background:
		                        			and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking. 
		                        		
		                        			Methods:
		                        			This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance. 
		                        		
		                        			Results:
		                        			Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal. 
		                        		
		                        			Conclusions
		                        			The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy. 
		                        		
		                        		
		                        		
		                        	
9.Aldehyde Dehydrogenase 2 Gene Mutation May Reduce the Risk of Rupture of Intracranial Aneurysm in Chinese Han Population
Xiheng CHEN ; Siming GUI ; Dachao WEI ; Dingwei DENG ; Yudi TANG ; Jian LV ; Wei YOU ; Jia JIANG ; Jun LIN ; Huijian GE ; Peng LIU ; Yuhua JIANG ; Lixin MA ; Yunci WANG ; Ming LV ; Youxiang LI
Journal of Stroke 2025;27(2):237-249
		                        		
		                        			 Background:
		                        			and Purpose Ruptured intracranial aneurysms (RIA) are associated with a mortality rate of up to 40% in the Chinese population, highlighting the critical need for targeted treatment interventions for at-risk individuals. Although the impact of aldehyde dehydrogenase 2 (ALDH2) gene mutations on susceptibility to intracranial aneurysms (IA) is well documented, the potential connection between ALDH2 rs671 single-nucleotide polymorphism (SNP) and RIA remains unexplored. Given the increased prevalence of ALDH2 gene mutations among Chinese Han individuals, it is clinically relevant to investigate the link between ALDH2 rs671 SNP and IA rupture. 
		                        		
		                        			Methods:
		                        			A prospective study was conducted on 546 patients diagnosed with IA to investigate the association between ALDH2 rs671 SNP and the risk of IA rupture. 
		                        		
		                        			Results:
		                        			The ALDH2 rs671 SNP (ALDH2*2) was significantly more prevalent in patients with unruptured IA (UIA) than in those with RIA (32.56% vs. 18.58%, P=0.004). Multivariate logistic regression analysis revealed that people with the ALDH2 mutation (ALDH2*1/*2 and ALDH2*2/*2 gene type) had a significantly reduced odds ratio (OR=0.49; 95% confidence level [CI] 0.27–0.88; P=0.018) for RIAs. Age-specific subgroup analysis indicated that the ALDH2 mutation provided a stronger protective effect in individuals aged 60 years and above with IA compared to those under 60 years old (OR=0.38 vs. OR=0.52, both P<0.05). 
		                        		
		                        			Conclusion
		                        			The incidence of RIA was significantly higher in individuals with a normal ALDH2 gene (ALDH2*1/*1) than in those with an ALDH2 rs671 SNP (ALDH2*1/*2 or ALDH2*2/*2). ALDH2 rs671 SNP may serve as a protective factor against RIA in the Chinese Han population. 
		                        		
		                        		
		                        		
		                        	
10.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
		                        		
		                        			
		                        			 To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail