1.Exon Sequencing of HNF1β in Chinese Patients with Early-Onset Diabetes
Siqian GONG ; Hong LIAN ; Yating LI ; Xiaoling CAI ; Wei LIU ; Yingying LUO ; Meng LI ; Si-min ZHANG ; Rui ZHANG ; Lingli ZHOU ; Yu ZHU ; Qian REN ; Xiuying ZHANG ; Jing CHEN ; Jing WU ; Xianghai ZHOU ; Xirui WANG ; Xueyao HAN ; Linong JI
Diabetes & Metabolism Journal 2025;49(2):321-330
Background:
Maturity-onset diabetes of the young (MODY) due to variants of hepatocyte nuclear factor 1-beta (HNF1β) (MODY5) has not been well studied in the Chinese population. This study aimed to estimate its prevalence and evaluate the application of a clinical screening method (Faguer score) in Chinese early-onset diabetes (EOD) patients.
Methods:
Among 679 EOD patients clinically diagnosed with type 2 diabetes mellitus (age at diagnosis ≤40 years), the exons of HNF1β were sequenced. Functional impact of rare variants was evaluated using a dual-luciferase reporter system. Faguer scores ≥8 prompted multiplex ligation-dependent probe amplification (MLPA) for large deletions. Pathogenicity of HNF1β variants was assessed following the American College of Medical Genetics and Genomics (ACMG) guidelines.
Results:
Two rare HNF1β missense mutations (E105K and G454R) were identified by sequencing in five patients, showing functional impact in vitro. Another patient was found to have a whole-gene deletion by MLPA in 22 patients with the Faguer score above 8. Following ACMG guidelines, six patients carrying pathogenic or likely pathogenic variant were diagnosed with MODY5. The estimated prevalence of MODY5 in Chinese EOD patients was approximately 0.9% or higher.
Conclusion
MODY5 is not uncommon in China. The Faguer score is helpful in deciding whether to perform MLPA analysis on patients with negative sequencing results.
2.Exon Sequencing of HNF1β in Chinese Patients with Early-Onset Diabetes
Siqian GONG ; Hong LIAN ; Yating LI ; Xiaoling CAI ; Wei LIU ; Yingying LUO ; Meng LI ; Si-min ZHANG ; Rui ZHANG ; Lingli ZHOU ; Yu ZHU ; Qian REN ; Xiuying ZHANG ; Jing CHEN ; Jing WU ; Xianghai ZHOU ; Xirui WANG ; Xueyao HAN ; Linong JI
Diabetes & Metabolism Journal 2025;49(2):321-330
Background:
Maturity-onset diabetes of the young (MODY) due to variants of hepatocyte nuclear factor 1-beta (HNF1β) (MODY5) has not been well studied in the Chinese population. This study aimed to estimate its prevalence and evaluate the application of a clinical screening method (Faguer score) in Chinese early-onset diabetes (EOD) patients.
Methods:
Among 679 EOD patients clinically diagnosed with type 2 diabetes mellitus (age at diagnosis ≤40 years), the exons of HNF1β were sequenced. Functional impact of rare variants was evaluated using a dual-luciferase reporter system. Faguer scores ≥8 prompted multiplex ligation-dependent probe amplification (MLPA) for large deletions. Pathogenicity of HNF1β variants was assessed following the American College of Medical Genetics and Genomics (ACMG) guidelines.
Results:
Two rare HNF1β missense mutations (E105K and G454R) were identified by sequencing in five patients, showing functional impact in vitro. Another patient was found to have a whole-gene deletion by MLPA in 22 patients with the Faguer score above 8. Following ACMG guidelines, six patients carrying pathogenic or likely pathogenic variant were diagnosed with MODY5. The estimated prevalence of MODY5 in Chinese EOD patients was approximately 0.9% or higher.
Conclusion
MODY5 is not uncommon in China. The Faguer score is helpful in deciding whether to perform MLPA analysis on patients with negative sequencing results.
3.Exon Sequencing of HNF1β in Chinese Patients with Early-Onset Diabetes
Siqian GONG ; Hong LIAN ; Yating LI ; Xiaoling CAI ; Wei LIU ; Yingying LUO ; Meng LI ; Si-min ZHANG ; Rui ZHANG ; Lingli ZHOU ; Yu ZHU ; Qian REN ; Xiuying ZHANG ; Jing CHEN ; Jing WU ; Xianghai ZHOU ; Xirui WANG ; Xueyao HAN ; Linong JI
Diabetes & Metabolism Journal 2025;49(2):321-330
Background:
Maturity-onset diabetes of the young (MODY) due to variants of hepatocyte nuclear factor 1-beta (HNF1β) (MODY5) has not been well studied in the Chinese population. This study aimed to estimate its prevalence and evaluate the application of a clinical screening method (Faguer score) in Chinese early-onset diabetes (EOD) patients.
Methods:
Among 679 EOD patients clinically diagnosed with type 2 diabetes mellitus (age at diagnosis ≤40 years), the exons of HNF1β were sequenced. Functional impact of rare variants was evaluated using a dual-luciferase reporter system. Faguer scores ≥8 prompted multiplex ligation-dependent probe amplification (MLPA) for large deletions. Pathogenicity of HNF1β variants was assessed following the American College of Medical Genetics and Genomics (ACMG) guidelines.
Results:
Two rare HNF1β missense mutations (E105K and G454R) were identified by sequencing in five patients, showing functional impact in vitro. Another patient was found to have a whole-gene deletion by MLPA in 22 patients with the Faguer score above 8. Following ACMG guidelines, six patients carrying pathogenic or likely pathogenic variant were diagnosed with MODY5. The estimated prevalence of MODY5 in Chinese EOD patients was approximately 0.9% or higher.
Conclusion
MODY5 is not uncommon in China. The Faguer score is helpful in deciding whether to perform MLPA analysis on patients with negative sequencing results.
4.Exon Sequencing of HNF1β in Chinese Patients with Early-Onset Diabetes
Siqian GONG ; Hong LIAN ; Yating LI ; Xiaoling CAI ; Wei LIU ; Yingying LUO ; Meng LI ; Si-min ZHANG ; Rui ZHANG ; Lingli ZHOU ; Yu ZHU ; Qian REN ; Xiuying ZHANG ; Jing CHEN ; Jing WU ; Xianghai ZHOU ; Xirui WANG ; Xueyao HAN ; Linong JI
Diabetes & Metabolism Journal 2025;49(2):321-330
Background:
Maturity-onset diabetes of the young (MODY) due to variants of hepatocyte nuclear factor 1-beta (HNF1β) (MODY5) has not been well studied in the Chinese population. This study aimed to estimate its prevalence and evaluate the application of a clinical screening method (Faguer score) in Chinese early-onset diabetes (EOD) patients.
Methods:
Among 679 EOD patients clinically diagnosed with type 2 diabetes mellitus (age at diagnosis ≤40 years), the exons of HNF1β were sequenced. Functional impact of rare variants was evaluated using a dual-luciferase reporter system. Faguer scores ≥8 prompted multiplex ligation-dependent probe amplification (MLPA) for large deletions. Pathogenicity of HNF1β variants was assessed following the American College of Medical Genetics and Genomics (ACMG) guidelines.
Results:
Two rare HNF1β missense mutations (E105K and G454R) were identified by sequencing in five patients, showing functional impact in vitro. Another patient was found to have a whole-gene deletion by MLPA in 22 patients with the Faguer score above 8. Following ACMG guidelines, six patients carrying pathogenic or likely pathogenic variant were diagnosed with MODY5. The estimated prevalence of MODY5 in Chinese EOD patients was approximately 0.9% or higher.
Conclusion
MODY5 is not uncommon in China. The Faguer score is helpful in deciding whether to perform MLPA analysis on patients with negative sequencing results.
5.Mitochondrial Quality Control Affects Diabetic Cardiomyopathy:Based on Theory of Qi Deficiency and Stagnation
Aolin LI ; Lu LIAN ; Xinnong CHEN ; Yingyu XIE ; Zhipeng YAN ; Wenhui CAI ; QianQian ZHANG ; Chi ZHANG ; Junping ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(8):197-205
With the increasing incidence of diabetes mellitus in recent years, cardiomyopathy caused by diabetes mellitus has aroused wide concern and this disease is characterized by high insidiousness and high mortality. The early pathological changes of diabetic cardiomyopathy (DCM) are mitochondrial structural disorders and loss of myocardial metabolic flexibility. The turbulence of mitochondrial quality control (MQC) is a key mechanism leading to the accumulation of damaged mitochondria and loss of myocardial metabolic flexibility, which, together with elevated levels of oxidative stress and inflammation, trigger changes in myocardial structure and function. Qi deficiency and stagnation is caused by the loss of healthy Qi, and the dysfunction of Qi transformation results in the accumulation of pathogenic Qi, which further triggers injuries. According to the theory of traditional Chinese medicine (TCM), DCM is rooted in Qi deficiency of the heart, spleen, and kidney. The dysfunction of Qi transformation leads to the generation and lingering of turbidity, stasis, and toxin in the nutrient-blood and vessels, ultimately damaging the heart. Therefore, Qi deficiency and stagnation is the basic pathologic mechanism of DCM. Mitochondria, similar to Qi in substance and function, are one of the microscopic manifestations of Qi. The role of MQC is consistent with the defense function of Qi. In the case of MQC turbulence, mitochondrial structure and function are impaired. As a result, Qi deficiency gradually emerges and triggers pathological changes, which make it difficult to remove the stagnant pathogenic factor and aggravates the MQC turbulence. Ultimately, DCM occurs. Targeting MQC to treat DCM has become the focus of current research, and TCM has the advantages of acting on multiple targets and pathways. According to the pathogenesis of Qi deficiency and stagnation in DCM and the modern medical understanding of MQC, the treatment should follow the principles of invigorating healthy Qi, tonifying deficiency, and regulating Qi movement. This paper aims to provide ideas for formulating prescriptions and clinical references for the TCM treatment of DCM by targeting MQC.
6.Correlation Analysis Between Anti-cerebral Ischemia Oxidative Damage and Contents of Active Components in Characteristic Processed Products with Porcine Cardiac Blood and Other Processed Products of Salviae Miltiorrhizae Radix et Rhizoma from Menghe Medical School
Zhen ZENG ; Yuanpei LIAN ; Jiali CAI ; Chunyan YIN ; Dijun WANG ; Li ZHU ; Chanming LIU ; Wei HUANG ; Xiaojing YAN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(15):162-171
ObjectiveTo analyze the correlation between 11 small molecule active components and 1 protein component of characteristic processed products with porcine cardiac blood and other products of Salviae Miltiorrhizae Radix et Rhizoma(SMRR) from Menghe medical school and anti-cerebral ischemic oxidative damage, and to identify its key component markers of characteristic processed products with porcine cardiac blood for anti-cerebral ischemic oxidative damage. MethodHigh performance liquid chromatography(HPLC) was established to simultaneously determine the contents of 11 active ingredients in SMRR and its processed products[processed with porcine cardiac blood, porcine blood, wine and transferrin(Tf) in porcine cardiac blood], and the content of Tf in different processed products of SMRR was detected by enzyme-linked immunosorbent assay(ELISA). Furthermore, A zebrafish ischemic stroke model was constructed to evaluate the effects of different processed products of SMRR on the behavioral trajectory of cerebral ischemic zebrafish, the neuronal damage of transgenic zebrafish Tg(elavl3:eGFP) brain, as well as the levels of malondialdehyde(MDA) and superoxide dismutase(SOD) in the brain tissues. The hippocampal neurons oxygen-glucose deprivation/reoxygenation(OGD/R)-induced ischemia-hypoxia model was constructed to evaluate the effects of different processed products of SMRR on oxidative damage of neuronal cells by taking lactate dehydrogenase(LDH), reactive oxygen species(ROS), MDA and SOD as indexes. Finally, principal component analysis(PCA), partial least squares-discriminant analysis(PLS-DA) and Spearman correlation analysis were used to analyze the 11 small molecule active components and 1 protein component with efficacy indicators, in order to screen the key components of the characteristic processed products with porcine cardiac blood for cerebral ischemic oxidative damage. ResultCompared with the raw products, the contents of water-soluble and fat-soluble components in processed products of SMRR increased to different degrees, while the content of salvianolic acid A decreased. Compared with the wine-processed products, the contents of salvianolic acid B, danshensu, rosmarinic acid and other components in the porcine cardiac blood-processed products, porcine blood-processed products, Tf-processed products were increased, while the content of salvianolic acid A was decreased. ELISA results showed that there was no significant difference in Tf content between the porcine cardiac blood-processed products, porcine blood-processed products, Tf-processed products. Pharmacological results showed that different processed products of SMRR could improve the behavioral deficits, brain neuronal injury and oxidative stress after ischemic stroke in zebrafish, and the effect of the porcine cardiac blood-processed products was most pronounced. PCA results showed that salvianolic acid B, salvianolic acid A, rosmarinic acid, lithospermic acid, danshensu, tanshinone ⅡA, caffeic acid, cryptotanshinone and tanshinone Ⅰ were the main contributing components of SMRR and its processed products. And the results of correlation analysis showed that the contents of cryptotanshinone, rosmarinic acid, caffeic acid, dihydrotanshinone Ⅰ, salvianolic acid B, tanshinone ⅡA and tanshinone Ⅰ were negatively correlated with MDA level in zebrafish brain tissue, while the contents of lithospermic acid, protocatechuic aldehyde, rosmarinic acid, dihydrotanshinone Ⅰ, salvianolic acid B and Tf were positively correlated with SOD level, and the contents of rosmarinic acid, caffeic acid, dihydrotanshinone Ⅰ, salvianolic acid B, tanshinone ⅡA, tanshinone Ⅰ, danshensu, Tf were positively correlated with neuronal fluorescence intensity in the zebrafish brain. And the contents of lithospermic acid, protocatechuic aldehyde, rosmarinic acid, dihydrotanshinone Ⅰ, salvianolic acid B, tanshinone ⅡA and Tf were negatively correlated with LDH, ROS and MDA levels and positively correlated with SOD level. ConclusionThere are differences in the anti-ischemic oxidative damage effects of SMRR and its different processed products, among which the porcine cardiac blood-processed products has the strongest effect on improving oxidative damage, which may be related to the content changes of salvianolic acid B, danshensu, rosmarinic acid and other components. This study can provide a basis for clarifying the quality markers of SMRR processed with porcine cardiac blood for cerebral ischemia and elucidating its processing mechanism.
7.Screening and identification of human monoclonal antibodies against low-calcium response V antigen of Yersinia pestis
Li ZHANG ; Bin-Yang ZHENG ; Qi ZHANG ; Hai-Lian WU ; Hong-Xin PAN ; Feng-Cai ZHU ; Hai-Sheng WU ; Jian-Fang ZHOU
Chinese Journal of Zoonoses 2024;40(1):15-20
To characterize human antibodies against low-calcium response V(LcrV)antigen of Yersinia pestis,the mono-clonal antibodies were screened and assayed.Antibody gene was derived from peripheral blood mononuclear cells of the vaccin-ees immunized by plague subunit vaccine in phase Ⅱb clinical trial.Human ScFv antibody library was constructed by phage dis-play.After panning library by using recombinant LcrV antigen,antibody variable genes were sequenced and converted into IgG1 format to evaluate its binding specificity and relevant parameters.An anti-plague human ScFv antibody library was estab-lished contained 7.54× 108 independent clones.After panning by LcrV antigen,3 human antibodies named as RV-B4,RV-D1 and RV-E8,respectively,were identified.Using indirect enzyme-linked immunosorbent assay(ELISA)and Western blot(WB),the specific bindings of the mAbs to LcrV antigen were confirmed.The dissociation constant(KD)of them to LcrV is 2.1 nmol/L,1.24 nmol/L and 42 nmol/L,respectively.Minor protective efficacy was found among 3 human antibodies in Y.pestis 141-infected mice.Three anti-LcrV monoclonal antibodies generated from immunized vaccinees were binding specific antibod-ies and could not block plague infection in mice.These antibodies are the potential candidate reagents for basic research of plague immunity and the application of plague diagnosis.
8.Effects of polyene phosphatidylcholine on metabolic disorders of obese mice induced by high fat diet
Cai LI ; Bing-Jiu LU ; Zhao-Dong QI ; Jia-Lian ZHENG
The Chinese Journal of Clinical Pharmacology 2024;40(6):874-878
Objective To study the mechanism of polyene phosphatidylcholine in improving metabolic disorders and fatty liver induced by high fat diet.Methods Thirty-two C57BL/6 mice were randomly divided into blank group,control group,model group and experimental group.The blank group was fed with low-fat diet and intraperitoneal injection of 10%glucose 200 μL twice a week.Control group was fed with low-fat diet twice a week and intraperitoneally injected 10%glucose solution 200 μL containing polyene phosphatidylcholine(PPC)20 μg.Model group was fed with high-fat diet and intraperitoneal injection of 10%glucose 200 μL twice a week.Experimental group was fed with high-fat diet twice a week and intraperitoneally injected 10%glucose solution 200 μL containing PPC 20 μg.The body weight of the mice was measured,blood glucose test strips and insulin resistance was analyzed.The levels of triglyceride(TG),high density lipoprotein(HDL),low density lipoprotein(LDL),glutamic oxalic aminotransferase(GOT)and glutamic pyruvic aminotransferase(GPT)in serum and liver were analyzed by biochemical method.The levels of tumor necrosis factor-α(TNF-α),interleukin-6 and IL-8 were detected by enzyme-linked immunosorbent assay(ELISA).Results The serum TG levels of blank group,control group,model group and experimental group were(0.15±0.01),(0.11±0.01),(0.21±0.01)and(0.12±0.01)mmol·L-1;LDL levels were(0.41±0.01),(0.25±0.01),(0.71±0.02)and(0.49±0.01)mmol·L-1;GOT levels were(30.30±0.89),(31.39±1.18),(43.04±2.82)and(25.64±0.72)mmol·L-1;GPT levels were(9.15±0.45),(7.39±1.88),(12.87±1.81)and(7.96±1.64)mmol·L-1;fasting blood glucose levels were(4.97±0.08),(6.08±0.18),(8.12±0.20)and(7.29±0.02)mmol·L-1;fasting insulin levels were(6.52±1.11),(5.45±0.28),(54.83±4.32)and(30.55±2.73)mU·L-1;the levels of TNF-α in liver tissues were(3.98±0.63),(3.95±0.98),(20.55±4.71)and(15.28±1.73)pg·g-1;IL-6 levels were(18.93±8.56),(17.64±3.29),(59.40±4.63)and(37.54±7.33)pg·g-1;IL-8 levels were(67.16±12.37),(59.44±3.58),(198.40±9.27)and(132.10±7.04)pg·g-1.The difference of above indicatory between experimental group and model group was statistically significant(all P<0.05).Conclusion Polyene phosphatidylcholine may inhibit the expression of TNF-α,IL-6 and IL-8 inflammatory factors by mediating the inhibition of inflammation on liver tissue and then improve metabolic disorders.
9.Correlation between upper airway morphological changes and jaw movement after bimaxillary orthognathic surgery in pa-tients with skeletal Class Ⅲ malocclusion
Gen LI ; Songsong GUO ; Guanhui CAI ; Lian SUN ; Wen SUN ; Hua WANG
STOMATOLOGY 2024;44(7):515-521
Objective To investigate the morphological changes in the upper airway after bimaxillary surgery in patients with skeletal Class Ⅲ malocclusion and the relationship between jaw movement and airway changes using CBCT.Methods This study involved 44 individuals(21 males and 23 females)receiving Class Ⅲ bimaxillary surgery.Preoperative and 3-6-month postoperative CBCT data were examined using Dophin3D 11.95 software.The alterations before and after upper airway surgery were analysed using paired t-test and non-parametric Wilcoxon rank sum test.The association between airway alterations and jaw movement was examined using Pearson's correlation coefficient.Results Patients who underwent Class Ⅲ bimaxillary surgery had significantly reduced upper airway volume,sagittal cross-sectional area,and minimum cross-sectional area(P<0.01).A correlation exists between oropharyngeal volume change and point B change(P<0.05).When B point recession was>7 mm,the decrease in upper airway volume increased significantly(P<0.01),as did the risk of minimum cross-sectional area of the patient's airway(P<0.01).Conclusion ClassⅢbimaxillary surgery re-duces upper airway capacity.Postoperative reduction in upper airway capacity coincides with mandibular recession.Mandibular reces-sion(>7 mm)may reduce postoperative upper airway capacity and increase the risk of OSAHS.Patients at risk of upper airway stenosis should have their protocol modified to reduce airway risk.
10.Establishment of a population pharmacokinetic model for linezolid in neonates with sepsis
Zong-Tai FENG ; Lian TANG ; Zu-Ming YANG ; Chu-Chu GAO ; Jia-Hui LI ; Yan CAI ; Lu-Fen DUAN
Chinese Journal of Contemporary Pediatrics 2024;26(11):1162-1168
Objective To establish the pharmacokinetic model of linezolid in neonates,and to optimize the administration regimen. Methods A prospective study was conducted among 64 neonates with sepsis who received linezolid as anti-infective therapy,and liquid chromatography-tandem mass spectrometry was used to measure the plasma concentration of the drug. Clinical data were collected,and nonlinear mixed effects modeling was used to establish a population pharmacokinetic (PPK) model. Monte Carlo simulation and evaluation was performed for the optimal administration regimen of children with different features. Results The pharmacokinetic properties of linezolid in neonates could be described by a single-compartment model with primary elimination,and the population typical values for apparent volume of distribution and clearance rate were 0.79 L and 0.34 L/h,respectively. The results of goodness of fit,visualization verification,and the Bootstrap method showed that the model was robust with reliable results of parameter estimation and prediction. Monte Carlo simulation results showed that the optimal administration regimen for linezolid in neonates was as follows:6 mg/kg,q8h,at 28 weeks of gestational age (GA);8 mg/kg,q8h,at 32 weeks of GA;9 mg/kg,q8h,at 34-37 weeks of GA;11 mg/kg,q8h,at 40 weeks of GA. Conclusions The PPK model established in this study can provide a reference for individual administration of linezolid in neonates. GA and body weight at the time of administration are significant influencing factors for the clearance rate of linezolid in neonates.

Result Analysis
Print
Save
E-mail