1.Sesquiterpene ZH-13 from Aquilariae Lignum Resinatum Improves Neuroinflammation by Regulating JNK Phosphorylation
Ziyu YIN ; Yun GAO ; Junjiao WANG ; Weigang XUE ; Xueping PANG ; Huiting LIU ; Yunfang ZHAO ; Huixia HUO ; Jun LI ; Jiao ZHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):139-145
ObjectiveTo study the pharmacological substances and mechanisms through which sesquiterpene ZH-13 from Aquilariae Lignum Resinatum improves neuroinflammation. MethodsBV-2 microglial cells were stimulated with lipopolysaccharide (LPS) to induce neuroinflammation. The cells were divided into the normal group, the model group, and the ZH-13 low- and high-dose treatment groups (10, 20 μmol·L-1). The model group was treated with 1 μmol·L-1 LPS. Cell viability was assessed using the cell proliferation and activity assay (CCK-8 kit). Nitric oxide (NO) release in the cell supernatant was measured using a nitric oxide kit (Griess method). The mRNA expression levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and interleukin-6 (IL-6) were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The phosphorylation of mitogen-activated protein kinase (MAPK) pathway proteins was assessed by Western blot. ResultsCompared with the model group, ZH-13 dose-dependently reduced NO release from BV-2 cells under LPS stimulation (P<0.05, P<0.01). In the 20 μmol·L-1 ZH-13 treatment group, the mRNA expression levels of IL-1β, TNF-α, iNOS, and IL-6 were significantly reduced compared to the model group (P<0.05, P<0.01). In both the low- and high-dose ZH-13 groups, the expression of the inflammatory factor TNF-α and the phosphorylation of c-Jun N-terminal kinase (JNK) in the upstream MAPK pathway were significantly reduced (P<0.05). After stimulation with the JNK agonist anisomycin (Ani), both low- and high-dose ZH-13 treatment groups showed reduced phosphorylation of JNK proteins compared to the Ani-treated group (P<0.01). ConclusionThe sesquiterpene compound ZH-13 from Aquilariae Lignum Resinatum significantly ameliorates LPS-induced neuroinflammatory responses in BV-2 cells by inhibiting excessive JNK phosphorylation and reducing TNF-α expression. These findings elucidate the pharmacological substances and mechanisms underlying the sedative and calming effects of Aquilariae Lignum Resinatum.
2.Effects of loganin on inflammatory response and intestinal barrier damage in septic rats
Can WANG ; Yantao LI ; Zheng ZHOU ; Lupeng WANG ; Yuanyuan GAO ; Shaoxi FAN
China Pharmacy 2025;36(5):574-578
OBJECTIVE To investigate the effects of loganin on inflammatory response and intestinal barrier damage in septic rats by regulating the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil forming protein kinase 1 (ROCK1) signaling pathway. METHODS A sepsis rat model was established by cecal ligation and puncture, and randomly divided into sepsis group, loganin low-dose group (50 mg/kg loganin, gavage), loganin high-dose group (200 mg/kg loganin, gavage), positive control group (0.2 mg/kg atorvastatin, intraperitoneal injection), and loganin high-dose + lysophosphatidic acid (LPA) group (200 mg/kg loganin gavage and intraperitoneal injection of 10 mg/kg RohA activator LPA). An additional sham surgery group was established. Each group consisted of 10 rats, and medications were administered once every 6 hours for 4 times. After 24 hours of the last intervention, the levels of serum inflammatory factors interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β were detected. The pathological changes of ileal tissue were observed and Chiu’s intestinal mucosal injury score was also performed. The levels of intestinal function-lactate dehydrogenase (D-lactate), D-amino acid oxidase (DAO) and endotoxin, the percentages of zonula occludens-1 protein (ZO-1) and Occludin positive staining area, as well as protein expressions of RhoA, and ROCK1 were all detected. com RESULTS Compared with the sepsis group, the percentages of ZO-1 and Occludin positive areas increased significantly in loganin low-dose and high-dose groups; while the levels of IL-6, TNF-α, IL-1β, DAO, D-lactate and endotoxin, Chiu’s intestinal mucosal injury score as well as protein expressions of RhoA and ROCK1 decreased significantly (P<0.05); the destruction of rat ileal tissue was alleviated, and tissue edema and inflammatory infiltration were significantly reduced; moreover, the improvement effect in loganin high-dose group was superior to that in loganin low-dose group (P<0.05). Compared with loganin high-dose group, RhoA activator LPA reversed the trend of changes in the above indicators (P<0.05). CONCLUSIONS Loganin can alleviate inflammatory response and intestinal barrier damage in septic rats, the mechanism of which may be associated with inhibiting RhoA/ROCK1 signaling pathway.
3.Effect of electroacupuncture combined with low-frequency transcranial ultrasound stimulation on the electroencephalographic signals of rats with traumatic brain injury
Simiao GAO ; Xue HAN ; Xiaoguang WU ; Jinyu ZHENG ; Fangwen GAO ; Kuihua LI ; Yong PENG ; Lanxiang LIU
Chinese Journal of Tissue Engineering Research 2025;29(2):402-408
BACKGROUND:Traumatic brain injury is a condition in which the normal function of the brain is disrupted by a bump or impact to the head.It is necessary to find effective treatments and objective targets that can help doctors diagnose the injury status and restore the brain function of patients. OBJECTIVE:To explore the effect of electroacupuncture combined with low-frequency transcranial ultrasound stimulation on the electroencephalographic signals of rats with traumatic brain injury. METHODS:Forty 6-week-old SPF male Sprague-Dawley rats were randomly divided into five groups:sham group,model group,electroacupuncture group,low-frequency transcranial ultrasound stimulation group and combined group(electroacupuncture+low-frequency transcranial ultrasound stimulation),with eight rats in each group.Feeney weight-drop method was used to establish the animal model of traumatic brain injury.In the sham group,the bone window was only opened without impact.Interventions were started at 1 day after modeling.Electroacupuncture in the electroacupuncture group,low-frequency transcranial ultrasound stimulation in the low-frequency transcranial ultrasound stimulation group,and electroacupuncture+low-frequency transcranial ultrasound stimulation in the combined group were performed for days in total.The modified neurological severity scale score for assessing rats'neurological deficits was performed at 8 hours after modeling.The percentage of spontaneous alternation behavior in the Y-maze was measured at 7 days after modeling.Then,the electroencephalographic signals were collected and electroencephalographic data of α,β,θ,and δ waves were extracted by fast Fourier transform,and the value of oscillation amplitude and energy ratio were calculated in α,β,θ,and δ waves,as well as the Lempel-Ziv complexity and sample entropy. RESULTS AND CONCLUSION:Compared with the sham group,the modified neurological severity scale scores in the model group,electroacupuncture group,low-frequency transcranial ultrasound stimulation group and combined group were significantly increased at 8 hours after modeling(P<0.05).Compared with the sham group,the value of oscillation amplitude in δ wave and the value of δ energy ratio were significantly increased in the model group at 7 days after modeling,meanwhile the percentage of spontaneous alternation behavior in Y-maze,and the value of α/β energy ratio,Lempel-Ziv complexity,and sample entropy were significantly decreased(P<0.05).Compared with the model group,the value of oscillation amplitude in α and δ waves was significantly decreased in the combined group(P<0.05),while the value of α/β energy ratio was significantly increased(P<0.05)and the value of δ energy ratio was significantly decreased(P<0.05)in the electroacupuncture group,low-frequency transcranial ultrasound stimulation group and combined group.Compared with the electroacupuncture group and low-frequency transcranial ultrasound stimulation group,the value of δ energy ratio was significantly decreased in the combined group(P<0.05),while the percentage of spontaneous alternation behavior,the value of α/β energy ratio,the Lempel-Ziv complexity,and the sample entropy were significantly increased(P<0.05).To conclude,abnormal electroencephalographic signals can appear in rats with traumatic brain injury,while the electroacupuncture combined with low-frequency transcranial ultrasound stimulation can alleviate the abnormal electroencephalographic signals in rats,which suggests the electroencephalographic frequency domain value and nonlinear features can be used to assess the severity of traumatic brain injury.
4.Effect of auricular therapy on sleep improvement and the GABAergic system pathway in an insomnia rat model
Hao CHEN ; Xifen ZHANG ; Xuesong WANG ; Yuanbo GAO ; Xuxin LI ; Xihui ZHENG ; Yu WANG ; Xiaojun ZHENG ; Haiping LI ; Yanfen SHE
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):138-148
Objective:
To investigate the effect of auricular therapy on sleep improvement and the GABAergic system pathway in a rat model of insomnia and to explore its possible mechanism.
Methods:
According to the random number table, 60 male SD rats were randomly divided into blank control, model, auricular point sticking, auricular bloodletting, and auricular bloodletting combined with sticking groups, with 12 rats per group. Insomnia was induced by intraperitoneal injection of p-chlorophenylalanine. After establishing the insomnia model, 36 rats were treated once a day with auricular point sticking or bloodletting for 5 consecutive days. After the intervention, the general condition and body weight of rats were observed; the righting reflex test was used to detect the sleep latency and duration; HE staining was used to observe the morphology of hypothalamic neuron cells; and an enzyme-linked immunosorbent assay was used to detect the GABA and glutamate content in rat serum. Immunohistochemistry(IHC) and real-time fluorescence quantitative PCR were used to detect GABA ARα1 and GABA ARγ2 protein and mRNA expression in the hypothalamus of rats, and Western blotting(WB) was used to detect GABA ARα1, GABA ARγ2, GAD65/67, GAT-1, and GABA-T protein expression in the hypothalamus of rats.
Results:
Compared with the blank control group, the model group had a lower body weight, a significantly shorter sleep duration (P<0.05), severe damage to the morphological structure of hypothalamic neurons with disordered cell arrangement, larger intercellular gaps, enlarged cell bodies, and a vacuolated appearance. All the intervention groups had significantly higher body weight and longer sleep duration than the model group (P<0.05). Compared with the other intervention groups, the auricular point sticking group had a longer sleep duration (P<0.05), and the hypothalamic neuron cells in all intervention groups improved, with the auricular point sticking group showing more apparent improvement. The model group had a lower GABA and higher glutamate contents, and GABA ARα1, GABA ARγ2, and GAD65/67 protein expression in the hypothalamus were lower than in the blank control group. In contrast, GAT-1 and GABA-T protein expression was higher, and GABA ARα1 and GABA ARγ2 mRNA expression was lower (P<0.05). The serum GABA content in the auricular point sticking and auricular bloodletting groups was higher, and the serum glutamate content in the auricular point sticking and auricular bloodletting combined sticking groups was lower than in the model group. GABA ARα1 mRNA expression in the hypothalamus of each intervention group was significantly increased, and GABA ARγ2 mRNA expression in the hypothalamus of the auricular point sticking and auricular bloodletting combined sticking groups increased. GABA ARα1(IHC, WB), GABA ARγ2(WB), and GAD65/67 protein expression in the hypothalamus of the auricular point sticking group increased, whereas GAT-1 and GABA-T protein expression decreased. GABA ARα1 and GABA ARγ2 protein expression(IHC, WB) in the hypothalamus of the auricular bloodletting group increased, whereas GABA-T protein expression decreased. GABA ARγ1(IHC) and GABA ARγ2(WB) protein expression in the hypothalamus of the auricular bloodletting combined sticking group increased, whereas GAT-1 and GABA-T protein expression decreased (P<0.05). Compared with in the inventation groups, the serum GABA content in the auricular point sticking group increased, the serum glutamate content decreased, GABA ARα1 and GABA ARγ2 mRNA expression in the hypothalamus increased, and GABA ARα1(IHC), GAD65/67 protein expression increased. In contrast, GABA-T protein expression decreased (P<0.05), and GABA ARγ2 protein expression(IHC) in the hypothalamus of the auricular bloodletting group increased (P<0.05).
Conclusion
Auricular therapy, particularly auricular point sticking, may have modulated the GABAergic system pathway by upregulating hypothalamic GABA ARα1, GABA ARγ2, and GAD65/67 protein expression while downregulating GAT-1 and GABA-T protein expression to alleviate symptoms in an insomnia rat model.
5.Study on surface microcirculation sensitization of acupuncture points related to cold coagulation and stasis syndrome in primary dysmenorrhea
Xuxin LI ; Xuesong WANG ; Miao LIN ; Mingjian ZHANG ; Yuanbo GAO ; Xifen ZHANG ; Hao CHEN ; Haiping LI ; Xiaojun ZHENG ; Xisheng FAN ; Jun LIU ; Juncha ZHANG ; Yanfen SHE
Journal of Beijing University of Traditional Chinese Medicine 2025;48(2):253-269
Objective:
To assess the dynamic changes of microcirculation at acupoints in patients with primary dysmenorrhea and cold congelation and blood stasis syndrome using laser speckle blood flow imaging.
Methods:
Patients with primary dysmenorrhea and cold coagulation and blood stasis syndrome (primary dysmenorrhea group, n=53) and healthy female college students(control group, n=57) who met the inclusion and exclusion criteria from October 2020 to July 2022 were enrolled at Hebei University of Chinese Medicine. On the premenstrual and first day of menstruation, a laser speckle blood flow imaging system was used to measure the microcirculation blood flow perfusion on the surface of acupoints related to the conception, thoroughfare, and governor vessels, and stomach, spleen, and bladder meridians in the abdomen and lumbosacral regions. The dynamic changes in microcirculation were calculated based on the difference in average blood flow perfusion at each acupoint before and after menstruation. Receiver operating curve (ROC) analysis was used to analyze the diagnostic efficacy of dynamic changes in microcirculation on the surface of each acupoint. The microcirculation sensitization rate of acupoints was calculated.
Results:
Compared with the control group, the dynamic changes in microcirculation at the following acupoints in the primary dysmenorrhea group were increased (P<0.05): conception vessel (Yinjiao[CV7], Qihai[CV6], Shimen[CV5], Guanyuan[CV4]); left thoroughfare vessel (left Huangshu[KI16], left Zhongzhu[KI15], left Siman[KI14], left Qixue[KI13], left Dahe[KI12], left Henggu[KI11]); left stomach meridian (left Tianshu[ST25], left Wailing[ST26], left Qichong[ST30]); left spleen meridian (left Daheng[SP15], left Fujie[SP14]); right thoroughfare vessel (right Huangshu[KI16], right Zhongzhu[KI15], right Siman[KI14], right Qixue[KI13], right Dahe[KI12], right Henggu[KI11]); right stomach meridian (right Wailing[ST26], right Daju[ST27], right Shuidao[ST28], right Guilai[ST29], right Qichong[ST30]); and right spleen meridian (right Fujie[SP14]). The area under the ROC curve of conception vessel (Yinjiao[CV7], Qihai[CV6], Shimen[CV5], Guanyuan[CV4]), thoroughfare vessel (right Siman[KI14], left Huangshu[KI16], right Qixue[KI13], right Zhongzhu[KI15], right Dahe[KI12], left Zhongzhu[KI15], left Siman[KI14], right Huangshu[KI16], left Qixue[KI13], right Henggu[KI11], left Henggu[KI11], left Dahe[KI12]); stomach meridian (left Tianshu[ST25], right Guilai[ST29], left Wailing[ST26], right Shuidao[ST28], right Daju[ST27], right Wailing[ST26], right Qichong[ST30], left Qichong[ST30]), and spleen meridian (left Daheng[SP15], left Fujie[SP14], right Fujie[SP14]) was 0.610-0.682 (P<0.05). Compared with the control group, the sensitization rate of some acupoints in the primary dysmenorrhea group increased (P<0.05).
Conclusion
With the onset of menstruation, the blood flow perfusion of some acupoints in the abdomen (thoroughfare, and conception vessels, and stomach and spleen meridians) of patients with primary dysmenorrhea and cold blood coagulation and blood stasis syndrome increased, and the status of acupoints changed from a resting state to an active state. These acupoints are sensitive in patients with primary dysmenorrhea and cold blood coagulation and blood stasis syndrome and have a certain diagnostic efficacy, providing a basis for further analyzing the efficacy and mechanism of acupuncture and moxibustion to treat primary dysmenorrhea with cold blood coagulation and blood stasis syndrome.
6.Effect of Erchen Decoction (二陈汤) on Serum Leptin and Expression of LepR,POMC,and NPY in Hypothalamus of Metabolic Syndrome Model Mice with Phlegm Syndrome
Menghan YANG ; Yuanyuan LI ; Xiujuan ZHENG ; Wenhui XIONG ; Xirui HUANG ; Bizhen GAO
Journal of Traditional Chinese Medicine 2025;66(9):948-954
ObjectiveTo explore the potential mechanism of Erchen Decoction (二陈汤, ECD) in improving metabolic syndrome (MS) with phlegm syndrome. MethodsForty mice were randomly divided into a blank group of 10 mice and a modeling group of 30 mice. The MS model with phlegm syndrome was induced in the modeling group by high-fat diet. Thirty successfully modeled mice were randomly divided into a model group, a ECD group, and a metformin group, with 10 mice in each group. The ECD group was given 0.4 g/(kg·d) of ECD, while the metformin group was intervened with 11.1 g/(kg·d) of metformin solution, and the blank group and the model group were given 0.02 ml/(g·d) of sterilized drinking water, all by gavage, once daily for 4 weeks. Body weight, abdominal circumfe-rence, body length, Lee's index and food intake were recorded. Blood glucose and blood lipid levels including fasting blood glucose, triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured. ELISA was used to detect serum leptin levels, while HE staining was used to observe liver pathological changes. Western Blot and q-PCR were used to detect protein and mRNA expression of hypothalamic leptin receptor (LepR), pro melanocortin (POMC), and neuropeptide Y (NPY) in the hypothalamus. Immunofluorescence was used to detect fluorescence expression of POMC and NPY in the hypothalamic arcuate nucleus region. ResultsPathological results showed that the mice in the model group had numerous fat vacuoles in hepatocytes and significant liver fat deposition, while the ECD and metformin groups showed reduced fat vacuoles and less liver fat deposition. Compared to those in the blank group, the mice in the model group mice showed liver fat deposition, increased body weight, abdominal circumference, Lee's index and food intake; fasting blood glucose, TG, TC, LDL-C, and serum leptin levels were elevated, while HDL-C was decreased; the expression of LepR, POMC protein levels and their mRNA expression decreased, while the protein level and mRNA expression of NPY increased; the fluorescence expression of POMC in the arcuate nucleus was reduced, while NPY fluorescence expression increased (P<0.05 or P<0.01). Compared to the model group, the ECD group and metformin group showed significant improvements in the above indicators (P<0.05 or P<0.01). Compared to the ECD group, the metformin group showed a reduction in body weight and NPY fluorescence expression, and an increase in HDL-C levels (P<0.05 or P<0.01). ConclusionECD can downregulate serum leptin levels and improve glucose and lipid metabolism in the MS of phlegm syndrome. Its mechanism of action may be to reduce liver fat deposition and thereafter affect the expression of neuropeptides related to feeding activity in the hypothalamus.
7.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
8.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
9.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
10.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.


Result Analysis
Print
Save
E-mail