1.The risk prediction models for anastomotic leakage after esophagectomy: A systematic review and meta-analysis
Yushuang SU ; Yan LI ; Hong GAO ; Zaichun PU ; Juan CHEN ; Mengting LIU ; Yaxie HE ; Bin HE ; Qin YANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):230-236
Objective To systematically evaluate the risk prediction models for anastomotic leakage (AL) in patients with esophageal cancer after surgery. Methods A computer-based search of PubMed, EMbase, Web of Science, Cochrane Library, Chinese Medical Journal Full-text Database, VIP, Wanfang, SinoMed and CNKI was conducted to collect studies on postoperative AL risk prediction model for esophageal cancer from their inception to October 1st, 2023. PROBAST tool was employed to evaluate the bias risk and applicability of the model, and Stata 15 software was utilized for meta-analysis. Results A total of 19 literatures were included covering 25 AL risk prediction models and 7373 patients. The area under the receiver operating characteristic curve (AUC) was 0.670-0.960. Among them, 23 prediction models had a good prediction performance (AUC>0.7); 13 models were tested for calibration of the model; 1 model was externally validated, and 10 models were internally validated. Meta-analysis showed that hypoproteinemia (OR=9.362), postoperative pulmonary complications (OR=7.427), poor incision healing (OR=5.330), anastomosis type (OR=2.965), preoperative history of thoracoabdominal surgery (OR=3.181), preoperative diabetes mellitus (OR=2.445), preoperative cardiovascular disease (OR=3.260), preoperative neoadjuvant therapy (OR=2.977), preoperative respiratory disease (OR=4.744), surgery method (OR=4.312), American Society of Anesthesiologists score (OR=2.424) were predictors for AL after esophageal cancer surgery. Conclusion At present, the prediction model of AL risk in patients with esophageal cancer after surgery is in the development stage, and the overall research quality needs to be improved.
2.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
3.Quality evaluation of Xinjiang Rehmannia glutinosa and Rehmannia glutinosa based on fingerprint and multi-component quantification combined with chemical pattern recognition.
Pan-Ying REN ; Wei ZHANG ; Xue LIU ; Juan ZHANG ; Cheng-Fu SU ; Hai-Yan GONG ; Chun-Jing YANG ; Jing-Wei LEI ; Su-Qing ZHI ; Cai-Xia XIE
China Journal of Chinese Materia Medica 2025;50(16):4630-4640
The differences in chemical quality characteristics between Xinjiang Rehmannia glutinosa and R. glutinosa were analyzed to provide a theoretical basis for the introduction and quality control of R. glutinosa. In this study, the high performance liquid chromatography(HPLC) fingerprints of 6 batches of Xinjiang R. glutinosa and 10 batches of R. glutinosa samples were established. The content of iridoid glycosides, phenylethanoid glycosides, monosaccharides, oligosaccharides, and polysaccharides in Xinjiang R. glutinosa and R. glutinosa was determined by high performance liquid chromatography-diode array detection(HPLC-DAD), high performance liquid chromatography-evaporative light scattering detection(HPLC-ELSD), and ultraviolet-visible spectroscopy(UV-Vis). The determination results were analyzed with by chemical pattern recognition and entropy weight TOPSIS method. The results showed that there were 19 common peaks in the HPLC fingerprints of the 16 batches of R. glutinosa, and catalpol, aucubin, rehmannioside D, rehmannioside A, hydroxytyrosol, leonuride, salidroside, cistanoside A, and verbascoside were identified. Hierarchical cluster analysis(HCA) and principal component analysis(PCA) showed that Qinyang R. glutinosa, Mengzhou R. glutinosa, and Xinjiang R. glutinosa were grouped into three different categories, and eight common components causing the chemical quality difference between Xinjiang R. glutinosa and R. glutinosa in Mengzhou and Qinyang of Henan province were screened out by orthogonal partial least squares discriminant analysis(OPLS-DA). The results of content determination showed that there were glucose, sucrose, raffinose, stachyose, polysaccharides, and nine glycosides in Xinjiang R. glutinosa and R. glutinosa samples, and the content of catalpol, rehmannioside A, leonuride, cistanoside A, verbascoside, sucrose, and glucose was significantly different between Xinjiang R. glutinosa and R. glutinosa. The analysis with entropy weight TOPSIS method showed that the comprehensive quality of R. glutinosa in Mengzhou and Qinyang of Henan province was better than that of Xinjiang R. glutinosa. In conclusion, the types of main chemical components of R. glutinosa and Xinjiang R. glutinosa were the same, but their content was different. The chemical quality of R. glutinosa was better than Xinjiang R. glutinosa, and other components in R. glutinosa from two producing areas and their effects need further study.
Rehmannia/classification*
;
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Quality Control
4.Resveratrol promotes mitophagy via the MALAT1/miR-143-3p/RRM2 axis and suppresses cancer progression in hepatocellular carcinoma.
Chun-Yan FENG ; Cheng-Song CAI ; Xiao-Qian SHI ; Zhi-Juan ZHANG ; Dan SU ; Yun-Qing QIU
Journal of Integrative Medicine 2025;23(1):79-92
OBJECTIVE:
Resveratrol (Res) is a promising anticancer drug against hepatocellular carcinoma (HCC), but whether its anti-HCC effects implicate mitophagy remains unclear. Therefore, we aimed to explore the specific role of Res in mitophagy and the related mechanisms during the treatment of HCC.
METHODS:
HepG2 cells and tumor-grafted nude mice were used to investigate the effects of low-, middle- and high-dose of Res on HCC progression and mitophagy in vitro and in vivo, respectively. A series of approaches including cell counting kit-8, flow cytometry, wound healing and transwell assays were used to evaluate tumor cell functions. Transmission electron microscopy, immunofluorescence and Western blotting were used to assess mitophagy. Mitochondrial oxygen consumption rate, reactive oxygen species and membrane potential were used to reflect mitochondrial function. After disrupting the expression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), miR-143-3p, and ribonucleoside reductase M2 (RRM2), the effects of the MALAT1/miR-143-3p/RRM2 axis on cell function and mitophagy under Res treatment were explored in vitro. Additionally, dual-luciferase reporter and chromatin immunoprecipitation were used to confirm interactions between target genes.
RESULTS:
Res significantly inhibited the proliferation and promoted apoptosis of HCC cells in vitro, while significantly suppressing tumor growth in a dose-dependent manner and inducing mitophagy and mitochondrial dysfunction in vivo. Interestingly, MALAT1 was highly expressed in HCC cells and its knockdown upregulated miR-143-3p expression in HCC cells, which subsequently inhibited RRM2 expression. Furthermore, in nude mice grafted with HCC tumors and treated with Res, the expression of MALAT1, miR-143-3p and RRM2 were altered significantly. In vitro data further supported the targeted binding relationships between MALAT1 and miR-143-3p and between miR-143-3p and RRM2. Therefore, a series of cell-based experiments were carried out to study the mechanism of the MALAT1/miR-143-3p/RRM2 axis involved in mitophagy and HCC; these experiments revealed that MALAT1 knockdown, miR-143-3p mimic and RRM silencing potentiated the antitumor effects of Res and its activation of mitophagy.
CONCLUSION
Res facilitated mitophagy in HCC and exerted anti-cancer effects by targeting the MALAT1/miR-143-3p/RRM2 axis. Please cite this article as: Feng CY, Cai CS, Shi XQ, Zhang ZJ, Su D, Qiu YQ. Resveratrol promotes mitophagy via the MALAT1/miR-143-3p/RRM2 axis and suppresses cancer progression in hepatocellular carcinoma. J Integr Med. 2025; 23(1): 79-91.
Humans
;
MicroRNAs/genetics*
;
Liver Neoplasms/metabolism*
;
Carcinoma, Hepatocellular/metabolism*
;
Mitophagy/drug effects*
;
Resveratrol/pharmacology*
;
Animals
;
Mice, Nude
;
RNA, Long Noncoding/genetics*
;
Hep G2 Cells
;
Mice
;
Disease Progression
;
Mice, Inbred BALB C
5.Construction and simulation of medical resources demand model during epidemic events of infectious diseases
Dong WANG ; Yong-Quan TIAN ; Wei ZHANG ; Hong-Shu ZHOU ; Bo XIE ; Zhen-Yan LI ; Si-Hai FAN ; Su-Juan HUANG
Chinese Journal of Infection Control 2024;23(10):1286-1294
Objective To construct the demand model of four types of medical resources including beds in hospi-tal,beds in intensive care unit(ICU),ventilators and medical human resources during the major infectious disease epidemic events,simulate and analyze the treatment of infectious diseases when different medical resources are in short supply.Methods Based on the susceptible-exposed-infectious-recovered(SEIR)model,considering the infec-tivity of infected persons,the susceptibility of the population and the immunity of convalescents,the characteristics of asymptomatic COVID-19 patients and different clinical types,the"COVID-19 infection-hospitalization model"was constructed.By collecting and setting the parameters of disease transmission,clinical course and medical re-source shortage scenarios,an analysis model of allocation and supply of urban medical resources during infectious di-sease epidemic events was initially formed based on Anylogic platform,the supply and demand of medical resources during infectious disease events in different scenarios were analyzed.Results In the non-intervention scenario,the peak time of bed demand was on the 107th day,and the peak value was 160.92 beds per thousand people;the peak time of ventilator demand was on the 122nd day,and the peak value was 5.61 units per thousand people;the peak time of ICU bed demand was on the 117th day,and the peak value was 12.78 beds per thousand people;the peak time of the demand for medical human resources was on the 109th day,and the peak value was 151.12 persons per thousand persons.The simulation results suggested that there were some differences in the impact of different medi-cal resources on the outcome of medical treatment.Conclusion This study constructs an analytical tool for the allo-cation and supply of urban medical resources under the epidemic events of infectious diseases,and the results of mul-tiple simulation experiments suggest that bed resources and medical human resources play more important roles in the outcome of medical treatment.
6.Functionalized Cadmium-Metal Organic Framework Materials with Azo Bonds for Highly Sensitive Electrochemical Detection of 4-Aminophenol
Lu XU ; Tian-Tian MA ; Yi-Yan BAI ; Jing SU ; Yun-Long FU ; Hai-Ying YANG ; Wen-Juan JI
Chinese Journal of Analytical Chemistry 2024;52(4):587-596
The presence of 4-aminophenol(4-AP)in wastewater from the pharmaceutical industry is a common occurrence due to its role as a byproduct or intermediate during the hydrolysis process of paracetamol metabolism,resulting in significant water pollution.Therefore,it is crucial to employ a straightforward and reliable analytical approach for detecting 4-AP in the environment.In this study,a specific type of metal-organic framework(MOF)material called[Cd4(ABTC)2(H2O)12]n(SXNU-4-Cd,H4ABTC=3,3′,5,5′-azobenzene tetracarboxylic acid)was successfully synthesized,which exhibited a unique two-dimensional layered structure consisting of three intertwined spiral chains forming a distinctive″twist braid″.These layers underwent π-π stacking,creating three-dimensional channels with azo bonds decorating the channel walls.This p-π interaction significantly enhanced the adsorption capacity of SXNU-4-Cd towards 4-AP,thereby improving its recognition sensitivity.The fabricated SXNU-4-Cd/GCE sensor showed high sensitivity towards 4-AP in the linear concentration range of 0.1-130 μmol/L,with a detection limit of 8.6 nmol/L,and also exhibited good anti-interference capability,reproducibility and stability.The SXNU-4-Cd/GCE sensor was successfully used for detecting 4-AP in lake water sample,with spiked recoveries of 95.9%-102.8%.This study introduced a novel technique that utilized pure Cd-MOFs to develop electrochemical sensor capable of effectively detecting 4-AP in water samples.
7.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
8.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
9.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
10.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.

Result Analysis
Print
Save
E-mail