1.A prospective study of the effect of laparoscopic splenectomy and azygoportal disconnection on liver synthetic function and liver cirrhosis
Kunqing XIAO ; Tianming GAO ; Jinhong CAI ; Zhaobao SHI ; Shengjie JIN ; Chi ZHANG ; Baohuan ZHOU ; Dousheng BAI ; Guoqing JIANG
Chinese Journal of Surgery 2025;63(1):51-57
Objective:To investigate the effect of laparoscopic splenectomy and azygoportal disconnection (LSD) on liver synthesis and development of liver cirrhosis.Methods:This is a prospective case series study.The clinical data of liver cirrhotic patients with portal hypertension who received LSD at the Department of Hepatobiliary Surgery of Northern Jiangsu People′s Hospital Affiliated to Yangzhou University from September 2014 to January 2016 were included. This study analyzed the diameter of the portal vein, the velocity of portal blood flow, the routine blood parameters, the liver function, the synthetic proteins of liver (antithrombin Ⅲ (AT-Ⅲ), protein S, protein C), and the serum content of liver fibrotic markers(collagen type Ⅳ, procollagen type Ⅲ, laminin, hyaluronidase). Repeated measures ANOVA was used for comparison between multiple groups, and least significance difference was used for post-hoc multiple comparison.Results:A total of 106 patients were included in the study, including 70 males and 36 females, aged (51.8±9.8) years(range: 28 to 75 years).Compared with the preoperative results, the diameter of portal vein and the velocity of portal vein decreased after surgery ( F=14.03, 12.15, respectively, both P<0.01). Compared with the preoperative results, the total bilirubin, albumin, prothrombin time, international normalized ratio, Child-Pugh score and classification were improved ( F=17.96, 56.01, 66.63, 35.83, 33.49, and 27.50, respectively, all P<0.01), and the AT-Ⅲ, protein S, protein C,collagen type Ⅳ, procollagen type Ⅲ, laminin and hyaluronidase levels were also improved ( F=47.87, 36.26, 18.02, 2.79, 14.58, 44.35, and 14.38, respectively, all P<0.01). Compared with the preoperative period, the diameter of portal vein was reduced from the first week to the 24 th month after surgery ( t=5.45 to 9.39, all P<0.01). Compared with the preoperative period, the velocity of portal vein blood from the first week after surgery to the 24 th month after surgery was decreased ( t=4.02 to 8.43, all P<0.01). Compared with the preoperative period, routine blood parameters (white blood count, hemoglobin, platelet count), liver function (total bilirubin, albumin, prothrombin time, international normalized ratio, Child-Pugh score), liver synthetic protein (AT-Ⅲ, protein S, protein C) and liver fibrotic markers (collagen type Ⅳ, procollagen type Ⅲ, laminin, hyaluronidase) were improved to varying degrees at the 24th month after surgery ( t=-20.46 to 11.93, all P<0.01). Conclusion:Preliminary findings show that LSD can reduce portal vein pressure, restore blood cell number, and improve liver synthesis function and the degree of liver fibrosis in patients with portal hypertension in liver cirrhosis.
2.A prospective study of the effect of laparoscopic splenectomy and azygoportal disconnection on liver synthetic function and liver cirrhosis
Kunqing XIAO ; Tianming GAO ; Jinhong CAI ; Zhaobao SHI ; Shengjie JIN ; Chi ZHANG ; Baohuan ZHOU ; Dousheng BAI ; Guoqing JIANG
Chinese Journal of Surgery 2025;63(1):51-57
Objective:To investigate the effect of laparoscopic splenectomy and azygoportal disconnection (LSD) on liver synthesis and development of liver cirrhosis.Methods:This is a prospective case series study.The clinical data of liver cirrhotic patients with portal hypertension who received LSD at the Department of Hepatobiliary Surgery of Northern Jiangsu People′s Hospital Affiliated to Yangzhou University from September 2014 to January 2016 were included. This study analyzed the diameter of the portal vein, the velocity of portal blood flow, the routine blood parameters, the liver function, the synthetic proteins of liver (antithrombin Ⅲ (AT-Ⅲ), protein S, protein C), and the serum content of liver fibrotic markers(collagen type Ⅳ, procollagen type Ⅲ, laminin, hyaluronidase). Repeated measures ANOVA was used for comparison between multiple groups, and least significance difference was used for post-hoc multiple comparison.Results:A total of 106 patients were included in the study, including 70 males and 36 females, aged (51.8±9.8) years(range: 28 to 75 years).Compared with the preoperative results, the diameter of portal vein and the velocity of portal vein decreased after surgery ( F=14.03, 12.15, respectively, both P<0.01). Compared with the preoperative results, the total bilirubin, albumin, prothrombin time, international normalized ratio, Child-Pugh score and classification were improved ( F=17.96, 56.01, 66.63, 35.83, 33.49, and 27.50, respectively, all P<0.01), and the AT-Ⅲ, protein S, protein C,collagen type Ⅳ, procollagen type Ⅲ, laminin and hyaluronidase levels were also improved ( F=47.87, 36.26, 18.02, 2.79, 14.58, 44.35, and 14.38, respectively, all P<0.01). Compared with the preoperative period, the diameter of portal vein was reduced from the first week to the 24 th month after surgery ( t=5.45 to 9.39, all P<0.01). Compared with the preoperative period, the velocity of portal vein blood from the first week after surgery to the 24 th month after surgery was decreased ( t=4.02 to 8.43, all P<0.01). Compared with the preoperative period, routine blood parameters (white blood count, hemoglobin, platelet count), liver function (total bilirubin, albumin, prothrombin time, international normalized ratio, Child-Pugh score), liver synthetic protein (AT-Ⅲ, protein S, protein C) and liver fibrotic markers (collagen type Ⅳ, procollagen type Ⅲ, laminin, hyaluronidase) were improved to varying degrees at the 24th month after surgery ( t=-20.46 to 11.93, all P<0.01). Conclusion:Preliminary findings show that LSD can reduce portal vein pressure, restore blood cell number, and improve liver synthesis function and the degree of liver fibrosis in patients with portal hypertension in liver cirrhosis.
3.Design, synthesis and evaluation of oxadiazoles as novel XO inhibitors
Hong-zhan WANG ; Ya-jun YANG ; Ying YANG ; Fei YE ; Jin-ying TIAN ; Chuan-ming ZHANG ; Zhi-yan XIAO
Acta Pharmaceutica Sinica 2025;60(1):164-171
Xanthine oxidase (XO) is an important therapeutic target for the treatment of hyperuricemia and gout. Based on the previously identified potent XO inhibitor
4.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
5.Research on the Correlation between Balance Function and Core Muscles in Patients With Adolescent Idiopathic Scoliosis
Si-Jia LI ; Qing YUE ; Qian-Jin LIU ; Yan-Hua LIANG ; Tian-Tian ZHOU ; Xiao-Song LI ; Tian-Yang FENG ; Tong ZHANG
Neurospine 2025;22(1):264-275
Objective:
This study aimed to explore the correlation between balance function and core muscle activation in patients with adolescent idiopathic scoliosis (AIS), compared to healthy individuals.
Methods:
A total of 24 AIS patients and 25 healthy controls were recruited. The limits of stability (LOS) test were conducted to assess balance function, while surface electromyography was used to measure the activity of core muscles, including the internal oblique, external oblique, and multifidus. Diaphragm thickness was measured using ultrasound during different postural tasks. Center of pressure (COP) displacement and trunk inclination distance were also recorded during the LOS test.
Results:
AIS patients showed significantly greater activation of superficial core muscles, such as the internal and external oblique muscles, compared to the control group (p < 0.05). Diaphragm activation was lower in AIS patients during balance tasks (p < 0.01). Although no significant difference was observed in COP displacement between the groups, trunk inclination was significantly greater in the AIS group during certain tasks (p < 0.05).
Conclusion
These findings suggest distinct postural control patterns in AIS patients, highlighting the importance of targeted interventions to improve balance and core muscle function in this population.
6.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
7.Research on the Correlation between Balance Function and Core Muscles in Patients With Adolescent Idiopathic Scoliosis
Si-Jia LI ; Qing YUE ; Qian-Jin LIU ; Yan-Hua LIANG ; Tian-Tian ZHOU ; Xiao-Song LI ; Tian-Yang FENG ; Tong ZHANG
Neurospine 2025;22(1):264-275
Objective:
This study aimed to explore the correlation between balance function and core muscle activation in patients with adolescent idiopathic scoliosis (AIS), compared to healthy individuals.
Methods:
A total of 24 AIS patients and 25 healthy controls were recruited. The limits of stability (LOS) test were conducted to assess balance function, while surface electromyography was used to measure the activity of core muscles, including the internal oblique, external oblique, and multifidus. Diaphragm thickness was measured using ultrasound during different postural tasks. Center of pressure (COP) displacement and trunk inclination distance were also recorded during the LOS test.
Results:
AIS patients showed significantly greater activation of superficial core muscles, such as the internal and external oblique muscles, compared to the control group (p < 0.05). Diaphragm activation was lower in AIS patients during balance tasks (p < 0.01). Although no significant difference was observed in COP displacement between the groups, trunk inclination was significantly greater in the AIS group during certain tasks (p < 0.05).
Conclusion
These findings suggest distinct postural control patterns in AIS patients, highlighting the importance of targeted interventions to improve balance and core muscle function in this population.
8.Research on the Correlation between Balance Function and Core Muscles in Patients With Adolescent Idiopathic Scoliosis
Si-Jia LI ; Qing YUE ; Qian-Jin LIU ; Yan-Hua LIANG ; Tian-Tian ZHOU ; Xiao-Song LI ; Tian-Yang FENG ; Tong ZHANG
Neurospine 2025;22(1):264-275
Objective:
This study aimed to explore the correlation between balance function and core muscle activation in patients with adolescent idiopathic scoliosis (AIS), compared to healthy individuals.
Methods:
A total of 24 AIS patients and 25 healthy controls were recruited. The limits of stability (LOS) test were conducted to assess balance function, while surface electromyography was used to measure the activity of core muscles, including the internal oblique, external oblique, and multifidus. Diaphragm thickness was measured using ultrasound during different postural tasks. Center of pressure (COP) displacement and trunk inclination distance were also recorded during the LOS test.
Results:
AIS patients showed significantly greater activation of superficial core muscles, such as the internal and external oblique muscles, compared to the control group (p < 0.05). Diaphragm activation was lower in AIS patients during balance tasks (p < 0.01). Although no significant difference was observed in COP displacement between the groups, trunk inclination was significantly greater in the AIS group during certain tasks (p < 0.05).
Conclusion
These findings suggest distinct postural control patterns in AIS patients, highlighting the importance of targeted interventions to improve balance and core muscle function in this population.
9.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
10.Research on the Correlation between Balance Function and Core Muscles in Patients With Adolescent Idiopathic Scoliosis
Si-Jia LI ; Qing YUE ; Qian-Jin LIU ; Yan-Hua LIANG ; Tian-Tian ZHOU ; Xiao-Song LI ; Tian-Yang FENG ; Tong ZHANG
Neurospine 2025;22(1):264-275
Objective:
This study aimed to explore the correlation between balance function and core muscle activation in patients with adolescent idiopathic scoliosis (AIS), compared to healthy individuals.
Methods:
A total of 24 AIS patients and 25 healthy controls were recruited. The limits of stability (LOS) test were conducted to assess balance function, while surface electromyography was used to measure the activity of core muscles, including the internal oblique, external oblique, and multifidus. Diaphragm thickness was measured using ultrasound during different postural tasks. Center of pressure (COP) displacement and trunk inclination distance were also recorded during the LOS test.
Results:
AIS patients showed significantly greater activation of superficial core muscles, such as the internal and external oblique muscles, compared to the control group (p < 0.05). Diaphragm activation was lower in AIS patients during balance tasks (p < 0.01). Although no significant difference was observed in COP displacement between the groups, trunk inclination was significantly greater in the AIS group during certain tasks (p < 0.05).
Conclusion
These findings suggest distinct postural control patterns in AIS patients, highlighting the importance of targeted interventions to improve balance and core muscle function in this population.

Result Analysis
Print
Save
E-mail