1.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
2.Study on The Detection Method of Fat Infiltration in Muscle Tissue Based on Phase Angle Electrical Impedance Tomography
Wu-Guang XIAO ; Xiao-Peng ZHU ; Hui FENG ; Bo SUN ; Tong ZHAO ; Jia-Feng YAO
Progress in Biochemistry and Biophysics 2025;52(10):2663-2676
ObjectiveFat infiltration has been shown to be closely related to muscle mass loss and a variety of muscle diseases. This study proposes a method based on phase-angle electrical impedance tomography (ΦEIT) to visualize the electrical characteristic response caused by muscle fat infiltration, aiming to provide a new technical means for early non-invasive detection of muscle mass deterioration. MethodsThis study was divided into two parts. First, a laboratory pork model was constructed to simulate different degrees of fat infiltration by injecting1 ml or 2 ml of emulsified fat solution into different muscle compartments, and the phase angle images were reconstructed using ΦEIT. Second, a human experiment was conducted to recruit healthy subjects (n=8) from two age groups (20-25 years old and 26-30 years old). The fat content percentage ηfat of the left and right legs was measured by bioelectrical impedance analysis (BIA), and the phase angle images of the left and right calves were reconstructed using ΦEIT. The relationship between the global average phase angle ΦM and the spatial average phase angle ΦMi of each muscle compartment and fat infiltration was further analyzed. ResultsIn the laboratory pork model, the grayscale value of the image increased with the increase of ηfat and ΦM showed a downward trend. The results of human experiments showed that at the same fat content percentage, the ΦM of the 26-30-year-old group was about 20%-35% lower than that of the 20-25-year-old group. The fat content percentage was significantly negatively correlated with ΦM. In addition, the M2 (soleus) compartment was most sensitive to fat infiltration, and the spatial average phase angles of the M2 (soleus), M3 (tibialis posterior and flexor digitorum longus), and M4 (tibialis anterior, extensor digitorum longus, and peroneus longus) compartments all showed significant inter-group differences. ConclusionΦEIT imaging can effectively distinguish different degrees of fat infiltration, especially in deep, small or specially located muscles, showing high sensitivity, demonstrating the potential application of this method in local muscle mass monitoring and early non-invasive diagnosis.
3.Five-year outcomes of metabolic surgery in Chinese subjects with type 2 diabetes.
Yuqian BAO ; Hui LIANG ; Pin ZHANG ; Cunchuan WANG ; Tao JIANG ; Nengwei ZHANG ; Jiangfan ZHU ; Haoyong YU ; Junfeng HAN ; Yinfang TU ; Shibo LIN ; Hongwei ZHANG ; Wah YANG ; Jingge YANG ; Shu CHEN ; Qing FAN ; Yingzhang MA ; Chiye MA ; Jason R WAGGONER ; Allison L TOKARSKI ; Linda LIN ; Natalie C EDWARDS ; Tengfei YANG ; Rongrong ZHANG ; Weiping JIA
Chinese Medical Journal 2025;138(4):493-495
4.Proposal and research idea of "traditional Chinese medicine processing chemical biology".
Peng-Peng LIU ; Qian CAI ; Ji SHI ; Nan XU ; Hui GAO ; Ke-Wu ZENG ; Tian-Zhu JIA
China Journal of Chinese Materia Medica 2025;50(3):833-839
Traditional Chinese medicine(TCM) processing is a unique and highly distinctive pharmaceutical technology in China. Utilizing modern scientific methods to elucidate the connotations of traditional processing theory and its effects is expected to facilitate the inheritance, development, innovation, and enhancement of TCM processing, and lead to more original research outcomes in the field of TCM. The breakthrough in TCM processing lies in the study of its underlying principles, and analyzing these principles involves researching the transformation mechanisms of chemical components and the biological effect mechanisms of the transformed components. This paper proposed the concept of "TCM processing chemical biology"(TCMPCB) for the first time. Under the guidance of TCM theory, the active components transformed during TCM processing were used as chemical tools to study their targets and molecular regulatory mechanisms, aiming to clarify the scientific principles by which TCM processing affected biological effects in the organism. The research findings also provided new directions for discovering novel active components, new lead compounds, creating new decoction pieces, and developing new TCM drugs. This paper provided a detailed introduction to the background, definition, research content, research ideas, research methods, and prospects of TCMPCB, with the aim of offering new research perspectives for analyzing the principles of TCM processing and providing new pathways for achieving the "four new and eight transformations" in TCM processing.
Drugs, Chinese Herbal/chemistry*
;
Medicine, Chinese Traditional/methods*
;
Humans
;
Animals
5.Effects of Sishen Pills and its separated prescriptions on human intestinal flora based on in vitro fermentation model.
Jia-Yang XI ; Qi-Qi WANG ; Xue CHENG ; Hui XIA ; Lu CAO ; Yue-Hao XIE ; Tian-Xiang ZHU ; Ming-Zhu YIN
China Journal of Chinese Materia Medica 2025;50(11):3137-3146
Sishen Pills and its separated prescriptions are classic prescriptions of traditional Chinese medicine to treat intestinal diseases. In this study, a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry(HPLC-ESI-MS/MS) technology was used to identify the components of Sishen Pills, Ershen Pills, and Wuweizi Powder. The positive and negative ion sources of electrospray ionization were simultaneously collected by mass spectrometry. A total of 11 effective components were detected in Sishen Pills, with four effective components detected in Ershen Pills and eight effective components detected in Wuweizi Powder, respectively. To explore the effects of Sishen Pills and its separated prescriptions on the human intestinal flora, an in vitro anaerobic fermentation model was established, and the human intestinal flora was incubated with Sishen Pills, Ershen Pills, and Wuweizi Powder in vitro. The 16S rDNA sequencing technology was used to analyze the changes in the intestinal flora. The results showed that compared with the control group, Sishen Pills, and its separated prescriptions could decrease the intestinal flora abundance and increase the Shannon index after fermentation. The abundance of Bifidobacterium was significantly increased in the Sishen Pills and Ershen Pills groups. However, the abundance of Lactobacillus, Weissella, and Pediococcus was significantly increased in the Wuweizi Powder group. After fermentation for 12 h, the pH of the fermentation solution of three kinds of liquids with feces gradually decreased and was lower than that of the control group. The decreasing amplitude in the Wuweizi Powder group was the most obvious. The single-bacteria fermentation experiments further confirmed that Sishen Pills and Wuweizi Powder had inhibitory effects on Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis, and the antibacterial activity of Wuweizi Powder was stronger than that of Sishen Pills. Both Sishen Pills and Ershen Pills could promote the growth of Lactobacillus brevis, and Ershen Pills could promote the growth of Bifidobacterium adolescentis. This study provided a more sufficient theoretical basis for the clinical application of Sishen Pills and its separated prescriptions.
Humans
;
Gastrointestinal Microbiome/drug effects*
;
Drugs, Chinese Herbal/chemistry*
;
Fermentation/drug effects*
;
Bacteria/drug effects*
;
Chromatography, High Pressure Liquid
;
Tandem Mass Spectrometry
;
Intestines/microbiology*
6.Three new chalcone C-glycosides from Carthami Flos.
Jia-Xu BAO ; Yong-Xiang WANG ; Xian ZHANG ; Ya-Zhu YANG ; Yue LIN ; Jiao-Jiao YIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2025;50(13):3715-3745
The chemical components of Carthami Flos were investigated by using macroporous resin, silica gel column chromatography, reversed-phase octadecylsilane(ODS) column chromatography, Sephadex LH-20, and semi-preparative high-performance liquid chromatography(HPLC). The planar structures of the compounds were established based on their physicochemical properties and ultraviolet-visible(UV-Vis), infrared(IR), high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), and nuclear magnetic resonance(NMR) spectroscopic technology. The absolute configurations were determined by comparing the calculated and experimental electronic circular dichroism(ECD). Six flavonoid C-glycosides were isolated from the 30% ethanol elution fraction of macroporous resin obtained from the 95% ethanol extract of Carthami Flos, and identified as saffloquinoside F(1), 5-hydroxysaffloneoside(2), iso-5-hydroxysaffloneoside(3), isosafflomin C(4), safflomin C(5), and vicenin 2(6). Among these, the compounds 1 to 3 were new chalcone C-glycosides. The compounds 1, 2, 4, and 5 could significantly increase the viability of H9c2 cardiomyocytes damaged by oxygen-glucose deprivation/reoxygenation(OGD/R) at a concentration of 50 μmol·L~(-1), showing their good cardioprotective activity.
Glycosides/pharmacology*
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Carthamus tinctorius/chemistry*
;
Chalcones/pharmacology*
;
Animals
7.Pharmacological Mechanism of Chinese Medicine in Systemic Lupus Erythematosus: A Narrative Review.
Bo-Yu ZHU ; Zhi-Chao LIU ; Zhen-Xi ZHAO ; Hui-Ping HUANG ; Na ZHANG ; Jia XIA ; Wei-Wei CHEN
Chinese journal of integrative medicine 2025;31(2):157-169
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder affecting multiple systems, characterized by the development of harmful autoantibodies and immune complexes that lead to damage in organs and tissues. Chinese medicine (CM) plays a role in mitigating complications, enhancing treatment effectiveness, and reducing toxicity of concurrent medications, and ensuring a safe pregnancy. However, CM mainly solves the disease comprehensively through multi-target and multi-channel regulation process, therefore, its treatment mechanism is often complicated, involving many molecular links. This review introduces the research progress of pathogenesis of SLE from the aspects of genetics, epigenetics, innate immunity and acquired immunity, and then discusses the molecular mechanism and target of single Chinese herbal medicine and prescription that are commonly used and effective in clinic to treat SLE.
Lupus Erythematosus, Systemic/immunology*
;
Humans
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
8.Glucocorticoid Discontinuation in Patients with Rheumatoid Arthritis under Background of Chinese Medicine: Challenges and Potentials Coexist.
Chuan-Hui YAO ; Chi ZHANG ; Meng-Ge SONG ; Cong-Min XIA ; Tian CHANG ; Xie-Li MA ; Wei-Xiang LIU ; Zi-Xia LIU ; Jia-Meng LIU ; Xiao-Po TANG ; Ying LIU ; Jian LIU ; Jiang-Yun PENG ; Dong-Yi HE ; Qing-Chun HUANG ; Ming-Li GAO ; Jian-Ping YU ; Wei LIU ; Jian-Yong ZHANG ; Yue-Lan ZHU ; Xiu-Juan HOU ; Hai-Dong WANG ; Yong-Fei FANG ; Yue WANG ; Yin SU ; Xin-Ping TIAN ; Ai-Ping LYU ; Xun GONG ; Quan JIANG
Chinese journal of integrative medicine 2025;31(7):581-589
OBJECTIVE:
To evaluate the dynamic changes of glucocorticoid (GC) dose and the feasibility of GC discontinuation in rheumatoid arthritis (RA) patients under the background of Chinese medicine (CM).
METHODS:
This multicenter retrospective cohort study included 1,196 RA patients enrolled in the China Rheumatoid Arthritis Registry of Patients with Chinese Medicine (CERTAIN) from September 1, 2019 to December 4, 2023, who initiated GC therapy. Participants were divided into the Western medicine (WM) and integrative medicine (IM, combination of CM and WM) groups based on medication regimen. Follow-up was performed at least every 3 months to assess dynamic changes in GC dose. Changes in GC dose were analyzed by generalized estimator equation, the probability of GC discontinuation was assessed using Kaplan-Meier curve, and predictors of GC discontinuation were analyzed by Cox regression. Patients with <12 months of follow-up were excluded for the sensitivity analysis.
RESULTS:
Among 1,196 patients (85.4% female; median age 56.4 years), 880 (73.6%) received IM. Over a median 12-month follow-up, 34.3% (410 cases) discontinued GC, with significantly higher rates in the IM group (40.8% vs. 16.1% in WM; P<0.05). GC dose declined progressively, with IM patients demonstrating faster reductions (median 3.75 mg vs. 5.00 mg in WM at 12 months; P<0.05). Multivariate Cox analysis identified age <60 years [P<0.001, hazard ratios (HR)=2.142, 95% confidence interval (CI): 1.523-3.012], IM therapy (P=0.001, HR=2.175, 95% CI: 1.369-3.456), baseline GC dose ⩽7.5 mg (P=0.003, HR=1.637, 95% CI: 1.177-2.275), and absence of non-steroidal anti-inflammatory drugs use (P=0.001, HR=2.546, 95% CI: 1.432-4.527) as significant predictors of GC discontinuation. Sensitivity analysis (545 cases) confirmed these findings.
CONCLUSIONS
RA patients receiving CM face difficulties in following guideline-recommended GC discontinuation protocols. IM can promote GC discontinuation and is a promising strategy to reduce GC dependency in RA management. (Trial registration: ClinicalTrials.gov, No. NCT05219214).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Arthritis, Rheumatoid/drug therapy*
;
Glucocorticoids/therapeutic use*
;
Medicine, Chinese Traditional
;
Retrospective Studies
9.Real-world efficacy and safety of azvudine in hospitalized older patients with COVID-19 during the omicron wave in China: A retrospective cohort study.
Yuanchao ZHU ; Fei ZHAO ; Yubing ZHU ; Xingang LI ; Deshi DONG ; Bolin ZHU ; Jianchun LI ; Xin HU ; Zinan ZHAO ; Wenfeng XU ; Yang JV ; Dandan WANG ; Yingming ZHENG ; Yiwen DONG ; Lu LI ; Shilei YANG ; Zhiyuan TENG ; Ling LU ; Jingwei ZHU ; Linzhe DU ; Yunxin LIU ; Lechuan JIA ; Qiujv ZHANG ; Hui MA ; Ana ZHAO ; Hongliu JIANG ; Xin XU ; Jinli WANG ; Xuping QIAN ; Wei ZHANG ; Tingting ZHENG ; Chunxia YANG ; Xuguang CHEN ; Kun LIU ; Huanhuan JIANG ; Dongxiang QU ; Jia SONG ; Hua CHENG ; Wenfang SUN ; Hanqiu ZHAN ; Xiao LI ; Yafeng WANG ; Aixia WANG ; Li LIU ; Lihua YANG ; Nan ZHANG ; Shumin CHEN ; Jingjing MA ; Wei LIU ; Xiaoxiang DU ; Meiqin ZHENG ; Liyan WAN ; Guangqing DU ; Hangmei LIU ; Pengfei JIN
Acta Pharmaceutica Sinica B 2025;15(1):123-132
Debates persist regarding the efficacy and safety of azvudine, particularly its real-world outcomes. This study involved patients aged ≥60 years who were admitted to 25 hospitals in mainland China with confirmed SARS-CoV-2 infection between December 1, 2022, and February 28, 2023. Efficacy outcomes were all-cause mortality during hospitalization, the proportion of patients discharged with recovery, time to nucleic acid-negative conversion (T NANC), time to symptom improvement (T SI), and time of hospital stay (T HS). Safety was also assessed. Among the 5884 participants identified, 1999 received azvudine, and 1999 matched controls were included after exclusion and propensity score matching. Azvudine recipients exhibited lower all-cause mortality compared with controls in the overall population (13.3% vs. 17.1%, RR, 0.78; 95% CI, 0.67-0.90; P = 0.001) and in the severe subgroup (25.7% vs. 33.7%; RR, 0.76; 95% CI, 0.66-0.88; P < 0.001). A higher proportion of patients discharged with recovery, and a shorter T NANC were associated with azvudine recipients, especially in the severe subgroup. The incidence of adverse events in azvudine recipients was comparable to that in the control group (2.3% vs. 1.7%, P = 0.170). In conclusion, azvudine showed efficacy and safety in older patients hospitalized with COVID-19 during the SARS-CoV-2 omicron wave in China.
10.Integrative transcriptomic and epigenomic analysis identifies BCL6B as a novel regulator of human pluripotent stem cell to endothelial differentiation.
Yonglin ZHU ; Jinyang LIU ; Jia WANG ; Shuangyuan DING ; Hui QIU ; Xia CHEN ; Jianying GUO ; Peiliang WANG ; Xingwu ZHANG ; Fengzhi ZHANG ; Rujin HUANG ; Fuyu DUAN ; Lin WANG ; Jie NA
Protein & Cell 2025;16(11):985-990

Result Analysis
Print
Save
E-mail