1.Factors associated with stunting among infants and young children in the Fourth District of Camarines Sur, Philippines.
Jeena Sandra R. MANRIQUE-DE HITTA ; Kim Leonard G. DELA LUNA ; Anna Paulina S. RODRIGUEZ ; Mildred O. GUIRINDOLA
Acta Medica Philippina 2025;59(9):62-71
OBJECTIVE
This study aimed to investigate the determinants linked to stunting among infants and young children aged 0-23 months in the Fourth District of Camarines Sur.
METHODSAn analytical cross-sectional study was conducted among 628 primary caregivers with infants and young children aged 0-23 months in four municipalities of the Fourth District of Camarines Sur, Philippines, using a two stage stratified random sampling design. Data on sociodemographic and economic factors were collected through face-to-face interviews. Infant and young child feeding (IYCF) indicators were assessed using a list-based approach, while weight and length were evaluated using the World Health Organization Anthro Plus software. Descriptive statistics and multiple logistic regression were done using R statistical software version 4.3.1.
RESULTSThe study revealed that the prevalence of stunting was of significant public health concern, reaching 42.8%. Holding other variables constant, age of the child (OR=0.77; 95% CI: 0.63-0.94), having college undergraduate mothers (OR=0.26; 95% CI: 0.05-1.28), and belonging to a poor income household (OR=0.40; 95% CI: 0.14-0.88) were associated with stunting among infants aged 0.01-6.00 months. Moreover, after controlling for the confounding effects of other variables, age (OR=1.09; 95% CI: 1.05-1.14) and sex of the child (OR=1.55; 95% CI: 1.05-2.28) were associated with stunting among older children aged 6.00-23.99 months.
CONCLUSIONThis study emphasizes the challenge of stunting in the Fourth District of Camarines Sur. None of the IYCF indicators were associated with stunting; however, maternal education, the child’s age, sex, and socioeconomic status were identified as significant factors influencing stunting. Addressing these determinants through targeted interventions focusing on improving maternal education and enhancing socio-economic conditions were crucial to reducing stunting in the study areas.
Human ; Growth Disorders ; Risk Factors ; Nutritional Status ; Infant Nutrition Disorders
2.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma.
Zheqi LIU ; Zhen ZHANG ; Yu ZHANG ; Wenkai ZHOU ; Xu ZHANG ; Canbang PENG ; Tong JI ; Xin ZOU ; Zhiyuan ZHANG ; Zhenhu REN
International Journal of Oral Science 2024;16(1):9-9
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic environment. To clarify the relationship between different metabolic regions and the tumor immune microenvironment (TME) in OSCC, Single cell (SC) and spatial transcriptomics (ST) sequencing of OSCC tissues were performed. The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data. The metabolic activity of each spot was calculated using scMetabolism, and k-means clustering was used to classify all spots into hyper-, normal-, or hypometabolic regions. CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others. Through CellPhoneDB and NicheNet cell-cell communication analysis, it was found that in the hypermetabolic region, fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts (iCAFs), and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12. The secretion of CXCL12 recruits regulatory T cells (Tregs), leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment. This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC, ST and TCGA bulk data, and highlights potential targets for therapy.
Humans
;
Carcinoma, Squamous Cell/metabolism*
;
Squamous Cell Carcinoma of Head and Neck
;
Mouth Neoplasms/metabolism*
;
Immunosuppression Therapy
;
Transforming Growth Factor beta
;
Head and Neck Neoplasms
;
Gene Expression Profiling
;
Tumor Microenvironment
3.Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner.
Jinghui LEI ; Xiaoyu JIANG ; Daoyuan HUANG ; Ying JING ; Shanshan YANG ; Lingling GENG ; Yupeng YAN ; Fangshuo ZHENG ; Fang CHENG ; Weiqi ZHANG ; Juan Carlos Izpisua BELMONTE ; Guang-Hui LIU ; Si WANG ; Jing QU
Protein & Cell 2024;15(1):36-51
Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.
Humans
;
Vascular Endothelial Growth Factor A/metabolism*
;
Endothelial Cells/metabolism*
;
Transcription Factors/metabolism*
;
Gene Expression Regulation
;
Hypoxia/metabolism*
;
Cell Hypoxia/physiology*
4.Potassium dehydroandrographolide succinate regulates the MyD88/CDH13 signaling pathway to enhance vascular injury-induced pathological vascular remodeling.
Qiru GUO ; Jiali LI ; Zheng WANG ; Xiao WU ; Zhong JIN ; Song ZHU ; Hongfei LI ; Delai ZHANG ; Wangming HU ; Huan XU ; Lan YANG ; Liangqin SHI ; Yong WANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):62-74
Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.
Mice
;
Rats
;
Animals
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Remodeling
;
Cell Proliferation
;
Vascular System Injuries/pathology*
;
Carotid Artery Injuries/pathology*
;
Molecular Docking Simulation
;
Muscle, Smooth, Vascular
;
Cell Movement
;
Mice, Inbred C57BL
;
Signal Transduction
;
Succinates/pharmacology*
;
Potassium/pharmacology*
;
Cells, Cultured
;
Diterpenes
;
Cadherins
5.Aging parameters of the accelerated aging procedure through D-Galactose induction
Ronald Winardi Kartika ; Kris Herawan Timotius ; Veronika Maria Sidharta ; Tena Djuartina ; Cynthia Retna Sartika
Acta Medica Philippina 2024;58(Early Access 2024):1-6
Background and Objectives:
Intraperitoneal injection (i.p.) of D-galactose (D-gal) accelerates aging and develops aging models. A low dose of long-term use and a high dose of short-term use of D-gal can induce natural aging in mice, like brain, cardiac, liver, renal, and skin aging, and erectile dysfunction. Our research aims to determine whether a high dose of short-term use of D-gal. i.p. in rats can induce natural aging and affect the following parameters: body weight (BW), Superoxide Dismutase (SOD), Vascular endothelial growth factor (VEGF), C-reactive protein (CRP), and myostatin.
Methods:
A daily D-gal i.p. dose of 300 mg/ml/kg for seven days was carried out to induce aging parameters in the rats. After seven days, the body and gastrocnemius circumference of the rats were weighed, and biochemical analysis for SOD, VEGF, CRP, and myostatin in the blood plasma was done.
Results:
The data obtained were analyzed using nonparametric statistics Friedman test and Mann-Whitney test. After the seven day-intervention, both the control (NaCl 0.9% i.p.) and the high dose of short-term use of D-gal i.p. groups showed no significant difference in the body weight and gastrocnemius circumference. However, D-gal administration could increase the blood plasma level of SOD, VEGF, CRP, and myostatin.
Conclusion
We conclude that a high dose of short-term intraperitoneal D-galactose can be administrated to induce aging in rat models. The SOD, VEGF, CRP and myostatin can be used as aging parameters.
Aging
;
Galactose
;
Myostatin
;
Vascular Endothelial Growth Factor A
7.The role of jasmonic acid in stress resistance of plants: a review.
Lehuan ZHANG ; Changyu ZOU ; Tianxiang ZHU ; Meixia DU ; Xiuping ZOU ; Yongrui HE ; Shanchun CHEN ; Qin LONG
Chinese Journal of Biotechnology 2024;40(1):15-34
Jasmonic acid (JA), a plant endogenously synthesized lipid hormone, plays an important role in response to stress. This manuscript summarized the biosynthesis and metabolism of JA and its related regulatory mechanisms, as well as the signal transduction of JA. The mechanism and regulatory network of JA in plant response to biotic and abiotic stresses were systematically reviewed, with the latest advances highlighted. In addition, this review summarized the signal crosstalk between JA and other hormones in regulating plant resistance to various stresses. Finally, the problems to be solved in the study of plant stress resistance mediated by JA were discussed, and the application of new molecular biological technologies in regulating JA signaling to enhance crop resistance was prospected, with the aim to facilitate future research and application of plant stress resistance.
Signal Transduction
;
Cyclopentanes
;
Oxylipins
;
Plant Growth Regulators
8.Effects of VX765 on osteoarthritis and chondrocyte inflammation in rats.
Wanran HUANG ; Junxue TU ; Aiqing QIAO ; Chujun HE
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):74-81
OBJECTIVE:
To investigate the effects and underlying mechanisms of VX765 on osteoarthritis (OA) and chondrocytes inflammation in rats.
METHODS:
Chondrocytes were isolated from the knee joints of 4-week-old Sprague Dawley (SD) rats. The third-generation cells were subjected to cell counting kit 8 (CCK-8) analysis to assess the impact of various concentrations (0, 1, 5, 10, 20, 50, 100 μmol/L) of VX765 on rat chondrocyte activity. An in vitro lipopolysaccharide (LPS) induced cell inflammation model was employed, dividing cells into control group, LPS group, VX765 concentration 1 group and VX765 concentration 2 group without obvious cytotoxicity. Western blot, real-time fluorescence quantitative PCR, and ELISA were conducted to measure the expression levels of inflammatory factors-transforming growth factor β 1 (TGF-β 1), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Additionally, Western blot and immunofluorescence staining were employed to assess the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Thirty-two SD rats were randomly assigned to sham surgery group (group A), OA group (group B), OA+VX765 (50 mg/kg) group (group C), and OA+VX765 (100 mg/kg) group (group D), with 8 rats in each group. Group A underwent a sham operation with a medial incision, while groups B to D underwent additional transverse incisions to the medial collateral ligament and anterior cruciate ligament, with removal of the medial meniscus. One week post-surgery, groups C and D were orally administered 50 mg/kg and 100 mg/kg VX765, respectively, while groups A and B received an equivalent volume of saline. Histopathological examination using HE and safranin-fast green staining was performed, and Mankin scoring was utilized for evaluation. Immunohistochemical staining technique was employed to analyze the expressions of matrix metalloproteinase 13 (MMP-13) and collagen type Ⅱ.
RESULTS:
The CCK-8 assay indicated a significant decrease in cell viability at VX765 concentrations exceeding 10 μmol/L ( P<0.05), so 4 μmol/L and 8 μmol/L VX765 without obvious cytotoxicity were selected for subsequent experiments. Following LPS induction, the expressions of TGF-β 1, IL-6, and TNF-α in cells significantly increased when compared with the control group ( P<0.05). However, intervention with 4 μmol/L and 8 μmol/L VX765 led to a significant decrease in expression compared to the LPS group ( P<0.05). Western blot and immunofluorescence staining demonstrated a significant upregulation of Nrf2 pathway-related molecules Nrf2 and HO-1 protein expressions by VX765 ( P<0.05), indicating Nrf2 pathway activation. Histopathological examination of rat knee joint tissues and immunohistochemical staining revealed that, compared to group B, treatment with VX765 in groups C and D improved joint structural damage in rat OA, alleviated inflammatory reactions, downregulated MMP-13 expression, and increased collagen type Ⅱ expression.
CONCLUSION
VX765 can improve rat OA and reduce chondrocyte inflammation, possibly through the activation of the Nrf2 pathway.
Rats
;
Animals
;
Chondrocytes/metabolism*
;
Matrix Metalloproteinase 13/metabolism*
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha/metabolism*
;
Collagen Type II/metabolism*
;
Interleukin-6
;
Lipopolysaccharides/pharmacology*
;
NF-E2-Related Factor 2/pharmacology*
;
Inflammation/drug therapy*
;
Osteoarthritis/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Dipeptides
;
para-Aminobenzoates
9.Knockdown of interferon-γ inducible protein 30 (IFI30) inhibits the proliferation, invasion and migration of human glioma U251 cells by activating STAT1 and promotes their apoptosis.
Jingjing YE ; Wenqin XU ; Tianbing CHEN
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):33-42
Objective To establish U251 cells with inhibited expression of interferon-γ inducible protein 30 (IFI30), and to investigate the effect of IFI30 on cell biological function as well as its underlying mechanism. Methods Three knockdown sequences which target IFI30 were designed online and 3 small interfering RNAs (siRNA) were synthesized. After transfection, the inhibition efficiency was detected by real-time quantitative PCR. The siRNA sequence with the highest inhibition efficiency was selected to create short hairpin RNA (shRNA) plasmids. The recombinant plasmids and packaging plasmids were co-transfected into HEK293T cells to prepare lentivirus. The glioma U251 cells were transfected with lentivirus, and the positive cells were screened by puromycin. CCK-8 assay, 5-ethyl-2'-deoxyuridine (EdU) and colony formation assays were used to analyze cell proliferation; the flow cytometry was used to analyze cell cycle and apoptosis; the TranswellTM assay was used to detect cell invasion; the wound-healing assay was employed to detect cell migration, and western blot analysis to detect the protein expresison of cyclin D1, B-cell lymphoma factor 2 (Bcl2), epithelial cadherin (E-cadherin), neural cadherin (N-cadherin), signal transducer and activator of transcription 1 (STAT1). Results The sequence which effectively target IFI30 was screened and U251 cell line capable of inhibiting the IFI30 expression was successfully established. When IFI30 expression was knocked down, the proliferation of U251 cells was inhibited, along with increased ratio of cells in the phase G0/G1, the decreased phase S, the increased rate of cell apoptosis. The cell invasion and migration capabilities was also reduced. The decreased expression of cyclin D1, Bcl2 and N-cadherin were observed in U251 cells, and the expression of E-cadherin and the phosphorylation of STAT1 were found increased. Conclusion Knockdown of IFI30 inhibits the proliferation, invasion and migration of human glioma cell U251 and promotes its apoptosis by activating STAT1.
Humans
;
Cyclin D1/genetics*
;
HEK293 Cells
;
Interferon-gamma
;
RNA, Small Interfering
;
Apoptosis/genetics*
;
Cadherins
;
Cell Proliferation/genetics*
;
Glioma/genetics*
;
Proto-Oncogene Proteins c-bcl-2
;
Oxidoreductases Acting on Sulfur Group Donors
;
STAT1 Transcription Factor/genetics*
10.Impact of Folic Acid on the Resistance of Non-small Cell Lung Cancer Cells to Osimertinib by Regulating Methylation of DUSP1.
Chinese Journal of Lung Cancer 2024;26(12):881-888
BACKGROUND:
Drug resistance is the main cause of high mortality of lung cancer. This study was conducted to investigate the effect of folic acid (FA) on the resistance of non-small cell lung cancer (NSCLC) cells to Osimertinib (OSM) by regulating the methylation of dual specificity phosphatase 1 (DUSP1).
METHODS:
The OSM resistant NSCLC cell line PC9R was establishd by gradually escalation of OSM concentration in PC9 cells. PC9R cells were randomly grouped into Control group, OSM group (5 μmol/L OSM), FA group (600 nmol/L FA), methylation inhibitor decitabine (DAC) group (10 μmol/L DAC), FA+OSM group (600 nmol/L FA+5 μmol/L OSM), and FA+OSM+DAC group (600 nmol/L FA+5 μmol/L OSM+10 μmol/L DAC). CCK-8 method was applied to detect cell proliferation ability. Scratch test was applied to test the ability of cell migration. Transwell assay was applied to detect cell invasion ability. Flow cytometry was applied to measure and analyze the apoptosis rate of cells in each group. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) method was applied to detect the expression level of DUSP1 mRNA in cells. Methylation specific PCR (MSP) was applied to detect the methylation status of the DUSP1 promoter region in each group. Western blot was applied to analyze the expression levels of DUSP1 protein and key proteins in the DUSP1 downstream mitogen-activated protein kinase (MAPK) signaling pathway in each group.
RESULTS:
Compared with the Control group, the cell OD450 values (48 h, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the OSM group were obviously decreased (P<0.05); the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of extracellular regulated protein kinases (ERK) were obviously increased (P<0.05); the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the DAC group were obviously increased (P<0.05); the apoptosis rate, the expression of p38 MAPK protein, the phosphorylation level of ERK, and the methylation level of DUSP1 were obviously reduced (P<0.05). Compared with the OSM group, the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the FA+OSM group were obviously decreased (P<0.05); the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of ERK were obviously increased (P<0.05). Compared with the FA+OSM group, the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the FA+OSM+DAC group were obviously increased; the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of ERK were obviously reduced (P<0.05).
CONCLUSIONS
FA may inhibit DUSP1 expression by enhancing DUSP1 methylation, regulate downstream MAPK signal pathway, then promote apoptosis, inhibit cell invasion and metastasis, and ultimately reduce OSM resistance in NSCLC cells.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
Dual Specificity Phosphatase 1/pharmacology*
;
Cell Proliferation
;
p38 Mitogen-Activated Protein Kinases/pharmacology*
;
Methylation
;
Apoptosis
;
Cell Line, Tumor


Result Analysis
Print
Save
E-mail