1.Quantification of antigen of Mycoplasma capricolum subsp. capripneumoniae by optical assay.
Jiazhen GE ; Pengcheng GAO ; Tongtong TIAN ; Xiaoni WU ; Qianqian LI ; Kexin TIAN ; Guodong SONG ; Fuying ZHENG ; Yuefeng CHU
Chinese Journal of Biotechnology 2023;39(12):4874-4886
Mycoplasma capricolum subsp. capripneumoniae (Mccp) is the cause of contagious caprine pleuropneumonia (CCPP) in goats. Inactivated vaccines and capsular polysaccharide (CPS) indirect hemagglutination reagents are available for prevention and serological detection, but high culture costs and complex antigen quantification have been plagued by production staff. In order to solve these problems in production practice, a sugar fermentation medium with an initial pH value of 7.8, which could improve the production of two antigens simultaneously, was screened out by changing the initial pH value based on previous Mccp metabolomics analysis. Since phenol red can be identified by UV absorption spectrum and cetyltrimethylammonium bromide (CTAB) can bind to anionic capsular polysaccharide, a UV spectrum measurement method for analyzing the culture stage reached by Mccp and a CTAB precipitation test for relative quantification of capsular polysaccharide antigen content in the fermentation broth were established. The UV spectrum observation method can guide the production of Mccp according to the growth curve of Mccp, which greatly reduces the monitoring time of the traditional CCU method and improves the accuracy of the original eye-observation method. The established CTAB precipitation test can complete the monitoring of CPS content within 5 hours, which greatly reduces the time required compared with the traditional differential technique, and its accuracy was verified by the phenol-sulfuric acid method. The optimized culture medium and the two correlation comparison methods established in this study can effectively reduce the production cost of Mccp and improve the production efficiency. The two assays have been used in the research at our laboratory, which provides experimental data for further improvement of the production process of CCPP inactivated vaccine and capsular polysaccharide as well as rapid quantification.
Humans
;
Animals
;
Goats
;
Cetrimonium
;
Mycoplasma
;
Polysaccharides
2.miR-23b-3p regulates the differentiation of goat intramuscular preadipocytes by targeting the PDE4B gene.
Liyi ZHANG ; Xin LI ; Qing XU ; Xinzhu HUANG ; Yanyan LI ; Wei LIU ; Youli WANG ; Yaqiu LIN
Chinese Journal of Biotechnology 2023;39(12):4887-4900
This study aimed to explore the effect of miR-23b-3p on the differentiation of goat intramuscular preadipocytes, and to confirm whether miR-23b-3p plays its roles via targeting the PDE4B gene. Based on the pre-transcriptome sequencing data obtained previously, the miR-23b-3p, which was differentially expressed in goat intramuscular adipocytes before and after differentiation, was used as an entry point. real-time quantitative-polymerase chain reaction (qPCR) was used to detect the expression pattern of miR-23b-3p during the differentiation of goat intramuscular preadipocytes. The effects of miR-23b-3p on adipose differentiation and adipose differentiation marker genes were determined at the morphological and molecular levels. The downstream target genes of miR-23b-3p were determined using bioinformatics prediction as well as dual luciferase reporter assay to clarify the targeting relationship between miR-23b-3p and the predicted target genes. The results indicated that overexpression of miR-23b-3p reduced lipid droplet accumulation in goat intramuscular adipocytes, significantly down-regulated the expression levels of adipogenic marker genes AP2, C/EBPα, FASN, and LPL (P < 0.01). In addition, the expressions of C/EBPβ, DGAT2, GLUT4 and PPARγ were significantly downregulated (P < 0.05). After interfering with the expression of miR-23b-3p, lipid droplet accumulation was increased in goat intramuscular adipocytes. The expression levels of ACC, ATGL, AP2, DGAT2, GLUT4, FASN and SREBP1 were extremely significantly up-regulated (P < 0.01), and the expression levels of C/EBPβ, LPL and PPARγ were significantly up-regulated (P < 0.05). It was predicted that PDE4B might be a target gene of miR-23b-3p. The mRNA expression level of PDE4B was significantly decreased after overexpression of miR-23b-3p (P < 0.01), and the interference with miR-23b-3p significantly increased the mRNA level of PDE4B (P < 0.05). The dual luciferase reporter assay indicated that miR-23b-3p had a targeting relationship with PDE4B gene. MiR-23b-3p regulates the differentiation of goat intramuscular preadipocytes by targeting the PDE4B gene.
Animals
;
MicroRNAs/metabolism*
;
Goats/genetics*
;
PPAR gamma/metabolism*
;
Adipogenesis/genetics*
;
Cell Differentiation/genetics*
;
Luciferases
;
RNA, Messenger
3.BLOC1S1 promotes proliferation of goat spermatogonial stem cells.
Shicheng WAN ; Mengfei ZHANG ; Wenbo CHEN ; Miao HAN ; Donghui YANG ; Congliang WANG ; Wenping WU ; Yuqi WANG ; Na LI ; Haijing ZHU ; Arisha AHMED HAMED ; Jinlian HUA
Chinese Journal of Biotechnology 2023;39(12):4901-4914
With the rapid development of gene editing technology, the study of spermatogonial stem cells (SSCs) holds great significance in understanding spermatogenesis and its regulatory mechanism, developing transgenic animals, gene therapy, infertility treatment and protecting rare species. Biogenesis of lysosome-related organelles complex 1 subunit 1 (BLOC1S1) is believed to have anti-brucella potential. Exploring the impack of BLOC1S1 on goat SSCs not only helps investigate the ability of BLOC1S1 to promote SSCs proliferation, but also provides a cytological basis for disease-resistant breeding research. In this study, a BLOC1S1 overexpression vector was constructed by homologous recombination. The BLOC1S1 overexpression cell line of goat spermatogonial stem cells was successfully constructed by lentivirus packaging, transfection and puromycin screening. The overexpression efficiency of BLOC1S1 was found to be 18 times higher using real time quantitative PCR (RT-qPCR). Furthermore, the results from cell growth curve analysis, flow cytometry for cell cycle detection, and 5-ethynyl-2'-deoxyuridine (EdU) staining showed that BLOC1S1 significantly increased the proliferation activity of goat SSCs. The results of RT-qPCR, immunofluorescence staining and Western blotting analyses revealed up-regulation of proliferation-related genes (PCNA, CDK2, CCND1), and EIF2S3Y, a key gene regulating the proliferation of spermatogonial stem cells. These findings strongly suggest that the proliferative ability of goat SSCs can be enhanced through the EIF2S3Y/ERK pathway. In summary, this study successfully created a goat spermatogonial stem cell BLOC1S1 overexpression cell line, which exhibited improved proliferation ability. This research laid the groundwork for exploring the regulatory role of BLOC1S1 in goat spermatogonia and provided a cell platform for further study into the biological function of BLOC1S1. These findings also establish a foundation for breeding BLOC1S1 overexpressing goats.
Animals
;
Male
;
Goats
;
Stem Cells
;
Spermatogonia/metabolism*
;
Cell Proliferation
;
Flow Cytometry
;
Testis/metabolism*
4.Preparation of colloidal gold test strips for the detection of antibodies to peste des petits ruminants based on monoclonal antibodies to N protein.
Shuai DONG ; Weiqin MENG ; Ling MO ; Jinlong CHEN ; Jingnan SHI ; Zhe YANG ; Tong LI ; Qianqian XU ; Zhiqiang SHEN ; Jianchai LIU ; Jinliang WANG
Chinese Journal of Biotechnology 2023;39(12):4915-4926
A simple, fast, and visual method for detecting antibodies against peste des petits ruminants virus (PPRV) using colloidal gold strips was developed. In this study, the pET-32a-N was transformed into Escherichia coli Rosetta (DE3) for expression. Hybridoma cell lines were generated by fusing SP2/0 myeloma cells with splenocytes from immunized mice with the expressed and purified N protein of PPRV. The PPRV N protein was labeled with colloidal gold particles as the gold-labeled antigen. The N protein served as the gold standard antigen and as the test (T) line-coated antigen, while the monoclonal antibody served as the quality control (C) line-coated antibody to assemble the colloidal gold immunochromatographic test strips for detecting antibodies against the N protein of PPRV. Hybridoma cell line designated as 1F1 was able to stably secrete the monoclonal antibody against the N protein of PPRV. The titer of 1F1 monoclonal antibody in ascites was 1:128 000 determined by indirect enzyme-linked immunosorbent assays (ELISA), and the immunoglobulin subtype of the monoclonal antibody was IgG1, with kappa chain. The obtained monoclonal antibody was able to specifically recognize the N protein of PPRV, as shown by Western blotting and indirect immunofluorescent assay (IFA). The developed colloidal gold test strip method was able to detect PPRV antibodies specifically, and there was no difference between different batches of the test strips. Testing of a total of 122 clinical sera showed that the compliance rate of the test strip with ELISA test was 97.6%.The test strip assay developed in this study has good specificity, reproducibility, and sensitivity, and it can be used for the rapid detection of PPRV antibodies.
Animals
;
Mice
;
Peste-des-Petits-Ruminants/prevention & control*
;
Antibodies, Monoclonal
;
Reproducibility of Results
;
Peste-des-petits-ruminants virus
;
Antibodies, Viral
;
Enzyme-Linked Immunosorbent Assay
;
Goats
5.Comparison of two luminescence detection methods for staphylococcal enterotoxin C content in simulated milk samples.
Yuling ZHENG ; Ye WANG ; Qingyu LYU
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1089-1093
Objective To compare the sensitivity and accuracy of amplified luminescent proximity homogeneous assay linked immunosorbent assay (AlphaLISA) and magnetic particles-based chemiluminescence immunoassay (MP-CLIA) for detection of staphylococcal enterotoxin C (SEC) in the simulated milk samples. Methods The AlphaLISA was constructed using goat anti-SEC polyclonal antibody-coupled receptor microspheres, biotin-labeled SEC monoclonal antibody and streptavidin-coupled donor microspheres. The MP-CLIA was constructed using goat anti-SEC polyclonal antibody conjugated alkaline phosphatase, biotin-labeled anti-SEC monoclonal antibody and streptavidin conjugated magnetic beads. Results The sensitivity of AlphaLISA to detect SEC content in simulated milk samples was 4.04 ng/L, and the coefficient of variation (CV) was 1.98%~9.82%. The sensitivity of MP-CLIA was 108.19 ng/L and CV was 4.63%~20.40%. Conclusion Compared with MP-CLIA, AlphaLISA is more sensitive and accurate to detecting SEC.
Animals
;
Streptavidin
;
Biotin
;
Luminescence
;
Milk
;
Antibodies, Monoclonal
;
Goats
;
Immunoassay/methods*
6.Cloning, identification and functional analysis of the goat transcription factor c-fos.
Tingting HU ; Yong WANG ; Dingshuang CHEN ; Chengsi GONG ; Yanyan LI ; Yan XIONG ; Jianmei WANG ; Zhixiong LI ; Yaqiu LIN
Chinese Journal of Biotechnology 2023;39(4):1684-1695
C-fos is a transcription factor that plays an important role in cell proliferation, differentiation and tumor formation. The aim of this study was to clone the goat c-fos gene, clarify its biological characteristics, and further reveal its regulatory role in the differentiation of goat subcutaneous adipocytes. We cloned the c-fos gene from subcutaneous adipose tissue of Jianzhou big-eared goats by reverse transcription-polymerase chain reaction (RT-PCR) and analyzed its biological characteristics. Using real-time quantitative PCR (qPCR), we detected the expression of c-fos gene in the heart, liver, spleen, lung, kidney, subcutaneous fat, longissimus dorsi and subcutaneous adipocytes of goat upon induced differentiation for 0 h to 120 h. The goat overexpression vector pEGFP-c-fos was constructed and transfected into the subcutaneous preadipocytes for induced differentiation. The morphological changes of lipid droplet accumulation were observed by oil red O staining and bodipy staining. Furthermore, qPCR was used to test the relative mRNA level of the c-fos overexpression on adipogenic differentiation marker genes. The results showed that the cloned goat c-fos gene was 1 477 bp in length, in which the coding sequence was 1 143 bp, encoding a protein of 380 amino acids. Protein structure analysis showed that goat FOS protein has a basic leucine zipper structure, and subcellular localization prediction suggested that it was mainly distributed in the nucleus. The relative expression level of c-fos was higher in the subcutaneous adipose tissue of goats (P < 0.05), and the expression level of c-fos was significantly increased upon induced differentiation of subcutaneous preadipocyte for 48 h (P < 0.01). Overexpression of c-fos significantly inhibited the lipid droplets formation in goat subcutaneous adipocytes, significantly decreased the relative expression levels of the AP2 and C/EBPβ lipogenic marker genes (P < 0.01). Moreover, AP2 and C/EBPβ promoter are predicted to have multiple binding sites. In conclusion, the results indicated that c-fos gene was a negative regulatory factor of subcutaneous adipocyte differentiation in goats, and it might regulate the expression of AP2 and C/EBPβ gene expression.
Animals
;
Goats/genetics*
;
Cell Differentiation/genetics*
;
Adipogenesis/genetics*
;
Gene Expression Regulation
;
Proteins/genetics*
;
Cloning, Molecular
7.Cloning and expression profile of ZFP36L1 gene in goat.
Xiaotong MA ; Ruilong WANG ; Fei WANG ; Dingshuang CHEN ; Yanyan LI ; Yaqiu LIN ; Youli WANG ; Wei LIU
Chinese Journal of Biotechnology 2023;39(4):1696-1709
The purpose of this study was to clone and characterize the ZFP36L1 (zinc finger protein 36-like 1) gene, clarify its expression characteristics, and elucidate its expression patterns in different tissues of goats. Samples of 15 tissues from Jianzhou big-eared goats, including heart, liver, spleen, lung and kidney were collected. Goat ZFP36L1 gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR), then the gene and protein sequence were analyzed by online tools. Quantitative real-time polymerase chain reaction (qPCR) was used to detect the expression level of ZFP36L1 in intramuscular preadipocytes in different tissues and adipocytes of goat at different differentiation stages. The results showed that the length of ZFR36L1 gene was 1 224 bp, and the coding sequence (CDS) region was 1 017 bp, encoding 338 amino acids, which was a non-secretory unstable protein mainly located in nucleus and cytoplasm. Tissue expression profile showed that ZFP36L1 gene was expressed in all selected tissues. In visceral tissues, the small intestine showed the highest expression level (P < 0.01). In muscle tissue, the highest expression level was presented in longissimus dorsi muscle (P < 0.01), whereas the expression level in subcutaneous adipose tissue was significantly higher than that in other tissues (P < 0.01). The results of induced differentiation showed that the expression of this gene was up-regulated during adipogenic differentiation of intramuscular precursor adipocytes (P < 0.01). These data may help to clarify the biological function of the ZFP36L1 gene in goat.
Animals
;
Goats/genetics*
;
Amino Acid Sequence
;
Liver
;
Cloning, Molecular
8.Gene cloning and sequence analysis of the RPL29 gene and its effect on lipogenesis in goat intramuscular adipocytes.
Chengsi GONG ; Yaqiu LIN ; Tingting HU ; Yong WANG ; Yanyan LI ; Youli WANG
Chinese Journal of Biotechnology 2023;39(7):2695-2705
The aim of this study was to clone the goat RPL29 gene and analyze its effect on lipogenesis in intramuscular adipocytes. Using Jianzhou big-eared goats as the object, the goat RPL29 gene was cloned by reverse transcription-polymerase chain reaction (RT-PCR), the gene structure and expressed protein sequence were analyzed by bioinformatics, and the mRNA expression levels of RPL29 in various tissues and different differentiation stages of intramuscular adipocytes of goats were detected by quantitative real-time PCR (qRT-PCR). The RPL29 overexpression vector pEGFP-N1-RPL29 constructed by gene recombination was used to transfect into goat intramuscular preadipocytes and induce differentiation. Subsequently, the effect of overexpression of RPL29 on fat droplet accumulation was revealed morphologically by oil red O and Bodipy staining, and changes in the expression levels of genes related to lipid metabolism were detected by qRT-PCR. The results showed that the length of the goat RPL29 was 507 bp, including a coding sequence (CDS) region of 471 bp which encodes 156 amino acid residues. It is a positively charged and stable hydrophilic protein mainly distributed in the nucleus of cells. Tissue expression profiling showed that the expression level of this gene was much higher in subcutaneous adipose tissue and inter-abdominal adipose tissue of goats than in other tissues (P < 0.05). The temporal expression profile showed that the gene was expressed at the highest level at 84 h of differentiation in goat intramuscular adipocytes, which was highly significantly higher than that in the undifferentiated period (P < 0.01). Overexpression of RPL29 promoted lipid accumulation in intramuscular adipocytes, and the optical density values of oil red O staining were significantly increased (P < 0.05). In addition, overexpression of RPL29 was followed by a highly significant increase in ATGL and ACC gene expression (P < 0.01) and a significant increase in FASN gene expression (P < 0.05). In conclusion, the goat RPL29 may promote intra-muscular adipocyte deposition in goats by up-regulating FASN, ACC and ATGL.
Animals
;
Lipogenesis/genetics*
;
Adipogenesis/genetics*
;
Goats/genetics*
;
Adipocytes
;
Cell Differentiation/genetics*
;
Sequence Analysis
;
Cloning, Molecular
9.Effects of orientation and distance of goats on blast lung injury characteristics on a plateau above 4500-meter.
Zhao-Xia DUAN ; Guan-Hua LI ; Jie-Yuan ZHANG ; Meng-Sheng DENG ; Kui-Jun CHEN ; Liang-Chao ZHANG ; Xiang-Yun CHENG ; Jing CHEN ; Guang-Ming YANG ; Jian-Min WANG
Chinese Journal of Traumatology 2023;26(3):139-146
PURPOSE:
High explosives are used to produce blast waves to study their biological effects. The lungs are considered as the critical target organ in blast-effect studies. The degree of lung hemorrhaging is related to both the explosive power and the increased lung weight. We studied the characteristics of the biological effects from an air explosion of a thermobaric bomb in a high-altitude environment and the lethality and lung injury severity of goats in different orientations and distances.
METHODS:
Goats were placed at 2.5, 3, 4, and 5 m from the explosion center and exposed them to an air blast at an altitude of 4700-meter. A group of them standing oriented to the right side and the other group seated facing the explosion center vertically. The lung injuries were quantified according to the percentage of surface area contused, and using the pathologic severity scale of lung blast injury (PSSLBI) to score the 4 injury categories (slight, moderate, serious and severe) as 1, 2, 3, and 4, respectively. The lung coefficient (lung weight [g]/body weight [kg]) was the indicator of pulmonary edema and was related to lung injury severity. Blast overpressure data were collected using blast test devices placed at matching locations to represent loadings to goats. All statistical analyses were performed using SPSS, version 26.0, statistical software (SPSS, Inc., Chicago, IL, USA).
RESULTS:
In total, 127 goats were involved in this study. Right-side-standing goats had a significantly higher mortality rate than those seated vertical-facing (p < 0.05). At the 2.5 m distance, the goat mortality was nearly 100%, whereas at 5 m, all the goats survived. Lung injuries of the right-side-standing goats were 1 - 2 grades more serious than those of seated goats at the same distances, the scores of PSSLBI were significantly higher than the seated vertical-facing goats (p < 0.05). The lung coefficient of the right-side-standing goats were significantly higher than those of seated vertical-facing (p < 0.05). Mortality, PSSLBI, and the lung coefficient results indicated that the right-side-standing goats experienced severer injuries than the seated vertical-facing goats, and the injuries were lessened as the distance increased. The blast overpressure was consistent with these results.
CONCLUSION
The main killing factors of the thermobaric bomb in the high-altitude environment were blast overpressure, blast wind propulsions and burn. The orientation and distances of the goats significantly affected the blast injury severity. These results may provide a research basis for diagnosing, treating and protecting against injuries from thermobaric explosions.
Animals
;
Lung Injury/etiology*
;
Blast Injuries
;
Goats
;
Explosions
;
Lung/pathology*
10.Overexpression of ATF3 inhibits the differentiation of goat intramuscular preadipocytes.
Chongyang WANG ; Cheng LUO ; Hao ZHANG ; Xin LI ; Yanyan LI ; Yan XIONG ; Youli WANG ; Yaqiu LIN
Chinese Journal of Biotechnology 2022;38(8):2939-2947
The aim of this study was to investigate the effect of activating transcription factor 3 (ATF3) on the differentiation of intramuscular preadipocytes in goat, and to elucidate its possible action pathway at the molecular level. In this study, the recombinant plasmid of goat pEGFP-N1-ATF3 was constructed, and the intramuscular preadipocytes were transfected with liposomes. The relative expression levels of adipocyte differentiation marker genes were detected by quantitative real-time PCR (qRT-PCR). After transfection of goat intramuscular preadipocytes with the goat pEGFP-N1-ATF3 overexpression vector, it was found that the accumulation of lipid droplets was inhibited, and the adipocyte differentiation markers PPARγ, C/EBPα and SREBP1 were extremely significantly down-regulated (P < 0.01), while C/EBPβ and AP2 were significantly down-regulated (P < 0.05). The ATF3 binding sites were predicted to exist in the promoter regions of PPARγ, C/EBPα and AP2 by the ALGGEN PROMO program. The overexpression of goat ATF3 inhibits the accumulation of lipid droplets in intramuscular preadipocytes, and this effect may be achieved by down-regulating PPARγ, C/EBPα and AP2. These results may facilitate elucidation of the regulatory mechanism of ATF3 in regulating the differentiation of goat intramuscular preadipocytes.
3T3-L1 Cells
;
Activating Transcription Factor 3/pharmacology*
;
Adipocytes
;
Adipogenesis/genetics*
;
Animals
;
CCAAT-Enhancer-Binding Protein-alpha/pharmacology*
;
Cell Differentiation
;
Goats
;
Mice
;
PPAR gamma/metabolism*

Result Analysis
Print
Save
E-mail