1.Advancing the role of higher education institutions in attaining the health-related sustainable development goals: Proceedings of the 53rd Asia Pacific Academic Consortium for Public Health, 21-23 September 2022, Philippines
Maria Margarita M. Lota ; Paul Michael R. Hernandez ; Vivien Fe F. Fadrilan-camacho ; Fresthel Monica M. Climacosa ; Francis Andrew B. Cube ; Kim Leonard G. Dela luna ; Crystal Amiel M. Estrada ; Emerito Jose A. Faron ; Fernando B. Garcia jr. ; Myra S. Mistica ; Frederick S. Nieto ; Sharon Yvette Angelina M. Villanueva ; Vicente Y. Belizario jr.
Acta Medica Philippina 2025;59(4):10-13
Higher Education Institutions (HEIs) are acknowledged as key drivers in realizing health-related Sustainable Development Goals (SDGs). The University of the Philippines Manila, College of Public Health (UP CPH) together with the Asia-Pacific Academic Consortium for Public Health (APACPH), hosted the 53rd APACPH International Conference last 21-23 September 2022. The conference discussed current issues relating to the attainment of SDGs and promoted collaboration of leading academic institutions and other stakeholders in addressing various public health challenges. The conference revolved around the challenges and opportunities in attaining health-related SDGs, and the good practices and roles of HEIs in addressing health disparities. The lack of certificati on framework of public health tertiary programs, pedagogy and infrastructure, and ambiguous roles and network of public health professionals were discussed. The conference served as a platform for discussing potential resolutions and ways forward in addressing these challenges. Opportunities for improvement such as updating of policies and curricula, strengthening of internship and community engagement programs, establishment of capacity-building partnerships and programs, and developing multidisciplinary-competent faculty and students were identified. This paper providesthe highlights of the conference focusing on the good practices and roles of HEIs in addressing health disparities, the impact of COVID-19 pandemic, and other issues and challenges in attaining SDGs.
Human ; Sustainable Development ; Sustainable Development Goals ; Public Health
2.Environmental sustainability in healthcare: impacts of climate change, challenges and opportunities.
Ethan Yi-Peng KOH ; Wan Fen CHAN ; Hoon Chin Steven LIM ; Benita Kiat Tee TAN ; Cherlyn Tze-Mae ONG ; Prit Anand SINGH ; Michelle Bee Hua TAN ; Marcus Jin Hui SIM ; Li Wen ONG ; Helena TAN ; Seow Yen TAN ; Wesley Chik Han HUONG ; Jonathan SEAH ; Tiing Leong ANG ; Jo-Anne YEO
Singapore medical journal 2025;66(Suppl 1):S47-S56
Environmental damage affects many aspects of healthcare, from extreme weather events to evolving population disease. Singapore's healthcare sector has the world's second highest healthcare emissions per capita, hampering the nation's pledge to reduce emissions by 2030 and achieve net zero emissions by 2050. In this review, we provide an overview of the impact environmental damage has on healthcare, including facilities, supply chain and human health, and examine measures to address healthcare's impact on the environment. Utilising the 'R's of sustainability - rethinking, reducing/refusing, reusing/repurposing/reprocessing, repairing, recycling and research - we have summarised the opportunities and challenges across medical disciplines. Awareness and advocacy to adopt strategies at institutional and individual levels is needed to revolutionise our environmental footprint and improve healthcare sustainability. By leveraging evidence from ongoing trials and integrating sustainable practices, our healthcare system can remain resilient against environment-driven challenges and evolving healthcare demands while minimising further impacts of environmental destruction.
Humans
;
Climate Change
;
Delivery of Health Care
;
Singapore
;
Conservation of Natural Resources
;
Sustainable Development
;
Environment
3.The impact of Anchor, a home visitation programme for maltreated children, on child developmental and behavioural outcomes.
Shi Hua CHAN ; Jean Yin OH ; Li Ming ONG ; Wen Hann CHOW ; Oh Moh CHAY ; Salam SOLIMAN ; Lourdes Mary DANIEL ; Pratibha AGARWAL ; Charmain Samantha TAN ; Jun Lin SAI ; Joanne Ferriol ESPECKERMAN ; Rehena SULTANA ; Cong Jin Wilson LOW ; Sita Padmini YELESWARAPU
Annals of the Academy of Medicine, Singapore 2025;54(4):208-218
INTRODUCTION:
Adverse childhood experiences (ACEs) are associated with significant long-term impacts, yet few interventions specifically target ACE exposure, especially in Asian populations. Anchor, Singapore's first home visitation programme, addresses maltreat-ment among preschool children. This study evaluated Anchor's impact on children's developmental and behavioural outcomes.
METHOD:
We conducted a prospective evaluation of children under 4 years assessed for maltreatment from November 2019 to July 2023. Developmental and behavioural progress was measured every 6 months using the Ages and Stages Questionnaires (ASQ-3) and ASQ:Social-Emotional (ASQ:SE-2), and annually using the Child Behaviour Checklist (CBCL).
RESULTS:
The results of 125 children (mean age 20.0 months, 48% female) were analysed. The mean length of stay in programme was 21.2 (7.3) months. At baseline, 92 (73.6%) children were at risk of develop-mental delay and 25 (31.7%) children aged ≥18 months had behavioural concerns. The programme was associated with significant improvements in gross motor (P=0.002) and fine motor (P=0.001) domains of the ASQ-3 and internalising problem scale (P=0.001) of the CBCL.
CONCLUSION
Anchor effectively enhances develop-mental and behavioural outcomes for children exposed to maltreatment. Targeted early intervention through such programmes can mitigate adverse impacts, optimising developmental trajectories and potentially reducing the long-term clinical and economic burdens associated with ACEs.
Humans
;
Female
;
Male
;
Child Abuse/therapy*
;
Child, Preschool
;
Singapore
;
House Calls
;
Infant
;
Prospective Studies
;
Child Development
;
Developmental Disabilities/epidemiology*
;
Program Evaluation
;
Child Behavior Disorders
;
Child Behavior
4.Transcriptomic analysis of key genes involved in sex differences in intellectual development.
Jia-Wei ZHANG ; Xiao-Li ZHENG ; Hai-Qian ZHOU ; Zhen ZHU ; Wei HAN ; Dong-Min YIN
Acta Physiologica Sinica 2025;77(2):211-221
Intelligence encompasses various abilities, including logical reasoning, comprehension, self-awareness, learning, planning, creativity, and problem-solving. Extensive research and practical experience suggest that there are sex differences in intellectual development, with females typically maturing earlier than males. However, the key genes and molecular network mechanisms underlying these sex differences in intellectual development remain unclear. To date, Genome-Wide Association Studies (GWAS) have identified 507 genes that are significantly associated with intelligence. This study first analyzed RNA sequencing data from different stages of brain development (from BrainSpan), revealing that during the late embryonic stage, the average expression levels of intelligence-related genes are higher in males than in females, while the opposite is observed during puberty. This study further constructed interaction networks of intelligence-related genes with sex-differential expression in the brain, including the prenatal male network (HELP-M: intelligence genes with higher expression levels in prenatal males) and the pubertal female network (HELP-F: intelligence genes with higher expression levels in pubertal females). The findings indicate that the key genes in both networks are Ep300 and Ctnnb1. Specifically, Ep300 regulates the transcription of 53 genes in both HELP-M and HELP-F, while Ctnnb1 regulates the transcription of 45 genes. Ctnnb1 plays a more prominent role in HELP-M, while Ep300 is more crucial in HELP-F. Finally, this study conducted sequencing validation on rats at different developmental stages, and the results indicated that in the prefrontal cortex of female rats during adolescence, the expression levels of the intelligence genes in HELP-F, as well as key genes Ep300 and Ctnnb1, were higher than those in male rats. These genes were also involved in neurodevelopment-related biological processes. The findings reveal a sex-differentiated intelligence gene network and its key genes, which exhibit varying expression levels during the neurodevelopmental process.
Female
;
Intelligence/physiology*
;
Male
;
Sex Characteristics
;
Animals
;
Brain/growth & development*
;
E1A-Associated p300 Protein/physiology*
;
beta Catenin/physiology*
;
Transcriptome
;
Rats
;
Gene Expression Profiling
;
Genome-Wide Association Study
5.The pleiotropic role of MEF2C in bone tissue development and metabolism.
Hao-Jie XIAO ; Rui-Qi HUANG ; Sheng-Jie LIN ; Jin-Yang LI ; Xue-Jie YI ; Hai-Ning GAO
Acta Physiologica Sinica 2025;77(2):374-384
The development of bone in human body and the maintenance of bone mass in adulthood are regulated by a variety of biological factors. Myocyte enhancer factor 2C (MEF2C), as one of the many factors regulating bone tissue development and balance, has been shown to play a key role in bone development and metabolism. However, there is limited systematic analysis on the effects of MEF2C on bone tissue. This article reviews the role of MEF2C in bone development and metabolism. During bone development, MEF2C promotes the development of neural crest cells (NC) into craniofacial cartilage and directly promotes cartilage hypertrophy. In terms of bone metabolism, MEF2C exhibits a differentiated regulatory model across different types of osteocytes, demonstrating both promoting and other potential regulatory effects on bone formation, with its stimulating effect on osteoclasts being determined. In view of the complex roles of MEF2C in bone tissue, this paper also discusses its effects on some bone diseases, providing valuable insights for the physiological study of bone tissue and strategies for the prevention of bone diseases.
Humans
;
MEF2 Transcription Factors/physiology*
;
Bone and Bones/metabolism*
;
Animals
;
Bone Development/physiology*
;
Osteogenesis/physiology*
;
Myogenic Regulatory Factors/physiology*
8.Research progress on variety breeding of root- and rhizome-derived traditional Chinese medicine.
Yan CHEN ; Miao-Yin DONG ; Zhan-Feng CAO ; Xue-Zhou LIU ; Meng-Fei LI ; Jian-He WEI
China Journal of Chinese Materia Medica 2025;50(2):363-383
Germplasm degeneration occurs during the long-term cultivation of root-and rhizome-derived traditional Chinese medicine(RR-TCM), which seriously restricts the high-quality development of their industry. Therefore, it is urgent to solve the problem of germplasm degeneration through variety breeding. In this paper, based on previously published research articles, monographs, and news reports, the research progresses on the number and origins, breeding methods, and selection of new varieties of RR-TCM listed in the Chinese Pharmacopoeia(Edition 2020) were summarized and analyzed. The results show that there are 169 kinds of RR-TCM listed in the Chinese Pharmacopoeia(Edition 2020), originated from 223 origins with three breeding methods(i.e., seed propagation, vegetative reproduction, and tissue culture), and there are 215 species derived from seed propagation, 177 species derived from vegetative reproduction, and 164 species derived from tissue culture. To date, there are 62 origins breeding new varieties through conventional breeding, cross breeding, mutation breeding, ploidy breeding, or modern biotechnology breeding methods, including 57 origins breeding 145 new varieties through conventional breeding, 10 origins breeding 43 new varieties through mutation breeding, and seven origins breeding 12 new varieties through cross breeding method. They are used mainly to improve yield, disease resistance, and active ingredient content, but only a few new varieties have been widely used. This review will provide useful references in variety breeding, quality breeding, and standardized planting of RR-TCM.
Plant Breeding/methods*
;
Plant Roots/growth & development*
;
Rhizome/growth & development*
;
Drugs, Chinese Herbal
;
Plants, Medicinal/classification*
;
Medicine, Chinese Traditional
9.Effects of drought stress training on polysaccharide accumulation and drought resistance of Codonopsis pilosula.
Lu-Lu WANG ; Xiao-Lin WANG ; Zhe-Yu LIU ; Li-Zhen WANG ; Jia-Tong SHI ; Jiao-Jiao JI ; Jian-Ping GAO ; Yun-E BAI
China Journal of Chinese Materia Medica 2025;50(3):672-681
In order to clarify the effects of drought stress training on the quality and drought resistance of Codonopsis pilosula, this study used PEG to simulate drought stress and employed potting with water control for the drought stress training of C. pilosula plants. The polysaccharide content, secondary metabolites, antioxidant system, and photosynthetic pigment system of C. pilosula after drought stress training were analyzed. The results showed that the content of fructans in the root of C. pilosula increased after two rounds of drought stress treatment, and it was significantly higher than that of the control group. The accumulation of fructans in the root of C. pilosula showed an upward trend during the rehydration treatment. The content of lobetyolin and tangshenoside Ⅰ increased after drought stress treatment compared with that of the control group. The rehydration treatment caused first increasing and then decreasing in the content of lobetyolin, while it had no significant effect on the tangshenoside Ⅰcontent. The content of photosynthetic pigments decreased after drought stress treatment, and it gradually increased during the first round of rehydration and the second round of rehydration. Moreover, the increase was faster in the second round of rehydration than in the first round of rehydration. The content of the peroxidation product malondialdehyde(MDA) and the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) increased after drought stress treatment compared with those of the control group, and they showed a tendency of decreasing during rehydration. Moreover, the decrease was faster in the second round of rehydration than in the first round of rehydration. When the plants of C. pilosula after drought stress training were again subjected to severe drought stress, the wilting rate decreased significantly, and the biomass increases significantly. This study showed that the drought stress training could promote the accumulation of polysaccharides and secondary metabolites in the root of C. pilosula. When encountering drought stress again, C. pilosula plants could quickly regulate the antioxidant system and delay the decomposition of chlorophyll to respond to drought stress. The findings provide a theoretical basis for the ecological cultivation of C. pilosula in arid and semi-arid areas.
Codonopsis/growth & development*
;
Droughts
;
Polysaccharides/metabolism*
;
Stress, Physiological
;
Water/metabolism*
;
Antioxidants/metabolism*
;
Photosynthesis
;
Drought Resistance
10.Biological characteristics of pathogen causing damping off on Aconitum kusnezoffiii and inhibitory effect of effective fungicides.
Si-Yi GUO ; Si-Yao ZHOU ; Tie-Lin WANG ; Ji-Peng CHEN ; Zi-Bo LI ; Ru-Jun ZHOU
China Journal of Chinese Materia Medica 2025;50(7):1727-1734
Aconitum kusnezoffii is a perennial herbaceous medicinal plant of the family Ranunculaceae, with unique medicinal value. Damping off is one of the most important seedling diseases affecting A. kusnezoffii, occurring widely and often causing large-scale seedling death in the field. To clarify the species of the pathogen causing damping off in A. kusnezoffii and to formulate an effective control strategy, this study conducted pathogen identification, research on biological characteristics, and evaluation of fungicide inhibitory activity. Through morphological characteristics, cultural traits, and phylogenetic tree analysis, the pathogen causing damping off in A. kusnezoffii was identified as Rhizoctonia solani, belonging to the AG5 anastomosis group. The optimal temperature for mycelial growth of the pathogen was 25-30 ℃, with OA medium as the most suitable medium, pH 8 as the optimal pH, and sucrose and yeast as the best carbon and nitrogen sources, respectively. The effect of light on mycelial growth was not significant. In evaluating the inhibitory activity of 45 chemical fungicides, including 30% hymexazol, and 4 biogenic fungicides, including 0.3% eugenol, it was found that 30% thifluzamide and 50% fludioxonil had significantly better inhibitory effects on R. solani than other tested agents, with EC_(50) values of 0.129 6,0.220 6 μg·mL~(-1), respectively. Among the biogenic fungicides, 0.3% eugenol also showed an ideal inhibitory effect on the pathogen, with an EC_(50) of 1.668 9 μg·mL~(-1). To prevent the development of resistance in the pathogen and to reduce the use of chemical fungicides, it is recommended that the three fungicides above be used in rotation during production. These findings provide a theoretical basis for the accurate diagnosis and effective control strategy for R. solani causing damping off in A. kusnezoffii.
Fungicides, Industrial/pharmacology*
;
Plant Diseases/microbiology*
;
Rhizoctonia/growth & development*
;
Aconitum/microbiology*
;
Phylogeny
;
Mycelium/growth & development*


Result Analysis
Print
Save
E-mail