2.Asperuloside Promotes Apoptosis of Cervical Cancer Cells through Endoplasmic Reticulum Stress-Mitochondrial Pathway.
Zhi-Min QI ; Xia WANG ; Xia LIU ; Juan ZHAO
Chinese journal of integrative medicine 2024;30(1):34-41
OBJECTIVE:
To investigate the effects of asperuloside on cervical cancer based on endoplasmic reticulum (ER) stress and mitochondrial pathway.
METHODS:
Different doses (12.5-800 µg/mL) of asperuloside were used to treat cervical cancer cell lines Hela and CaSki to calculate the half maximal inhibitory concentration (IC50) of asperuloside. The cell proliferation was analyzed by clone formation assay. Cell apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were determined by flow cytometry. The protein expressions of cleaved-caspase-3, Bcl-2, Bax, Cyt-c, cleaved-caspase-4 and glucose-regulated protein 78 (GRP78) were analyzed by Western blot. And the inhibitor of ER stress, 4-phenyl butyric acid (4-PBA) was used to treat cervical cancer cells to further verify the role of ER stress in the apoptosis of cervical cancer cells induced by asperuloside.
RESULTS:
Asperuloside of 325, 650, and 1300 µg/mL significantly inhibited the proliferation and promoted apoptosis of Hela and CaSki cells (P<0.01). All doses of asperuloside significantly increased intracellular ROS levels, reduced mitochondrial membrane potential, significantly reduced Bcl-2 protein expression level, and increased Bax, Cyt-c, GRP78 and cleaved-caspase-4 expressions (P<0.01). In addition, 10 mmol/L 4-PBA treatment significantly promoted cell proliferation and reduced apoptosis (P<0.05), and 650 µg/mL asperuloside could reverse 4-PBA-induced increased cell proliferation, decreased apoptosis and cleaved-caspase-3, -4 and GRP78 protein expressions (P<0.05).
CONCLUSION
Our study revealed the role of asperuloside in cervical cancer, suggesting that asperuloside promotes apoptosis of cervical cancer cells through ER stress-mitochondrial pathway.
Female
;
Humans
;
Uterine Cervical Neoplasms/metabolism*
;
Caspase 3/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Endoplasmic Reticulum Chaperone BiP
;
HeLa Cells
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Endoplasmic Reticulum Stress
;
Cell Line, Tumor
3.Effects and mechanisms of total flavones of Abelmoschus manihot in attenuating diabetic tubulopathy by targeting endoplasmic reticulum stress-induced cell apoptosis.
Bing-Ying WAN ; Dong-Wei CAO ; Yi-Gang WAN ; Dai CHEN ; Wei WU ; Qi-Jun FANG ; Si-Yi LIU ; Yue TU ; Yu WANG ; Zi-Yue WAN
China Journal of Chinese Materia Medica 2023;48(10):2657-2666
Renal tubular injury in patients with diabetic kidney disease(DKD) may be accompanied by glomerular and microvascular diseases. It plays a critical role in the progression of renal damage in DKD, and is now known as diabetic tubulopathy(DT). To explore the multi-targeted therapeutic effects and pharmacological mechanisms in vivo of total flavones of Abelmoschus manihot(TFA), an extract from traditional Chinese medicine for treating kidney disease, in attenuating DT, the authors randomly divided all rats into four groups: a normal control group(normal group), a DT model group(model group), a DT model+TFA-treated group(TFA group) and a DT model+rosiglitazone(ROS)-treated group(ROS group). The DT rat model was established based on the DKD rat model by means of integrated measures. After successful modeling, the rats in the four groups were continuously given double-distilled water, TFA suspension, and ROS suspension, respectively by gavage every day. After 6 weeks of treatment, all rats were sacrificed, and the samples of their urine, blood, and kidneys were collected. The effects of TFA and ROS on various indicators related to urine and blood biochemistry, renal tubular injury, renal tubular epithelial cell apoptosis and endoplasmic reticulum stress(ERS), as well as the activation of the protein kinase R-like endoplasmic reticulum kinase(PERK)-eukaryotic translation initiation factor 2α(eIF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP) signaling pathway in the kidney of the DT model rats were investigated. The results indicated that hypertrophy of renal tubular epithelial cells, renal tubular hyperplasia and occlusion, as well as interstitial extracellular matrix and collagen deposition occurred in the DT model rats. Moreover, significant changes were found in the expression degree and the protein expression level of renal tubular injury markers. In addition, there was an abnormal increase in tubular urine proteins. After TFA or ROS treatment, urine protein, the characteristics of renal tubular injury, renal tubular epithelial cell apoptosis and ERS, as well as the activation of the PERK-eIF2α-ATF4-CHOP signaling pathway in the kidney of the DT model rats were improved to varying degrees. Therein, TFA was superior to ROS in affecting the pathological changes in renal tubule/interstitium. In short, with the DT model rats, this study demonstrated that TFA could attenuate DT by multiple targets through inhibiting renal tubular ERS-induced cell apoptosis in vivo, and its effect and mechanism were related to suppressing the activation of the PERK-eIF2α-ATF4-CHOP signaling pathway in the kidney. These findings provided preliminary pharmacological evidence for the application of TFA in the clinical treatment of DT.
Rats
;
Animals
;
Abelmoschus
;
Reactive Oxygen Species/metabolism*
;
Flavones/pharmacology*
;
Endoplasmic Reticulum Stress
;
Diabetic Nephropathies/drug therapy*
;
Apoptosis
;
Diabetes Mellitus
4.TRPV4-induced Neurofilament Injury Contributes to Memory Impairment after High Intensity and Low Frequency Noise Exposures.
Yang YANG ; Ju WANG ; Yu Lian QUAN ; Chuan Yan YANG ; Xue Zhu CHEN ; Xue Jiao LEI ; Liang TAN ; Hua FENG ; Fei LI ; Tu Nan CHEN
Biomedical and Environmental Sciences 2023;36(1):50-59
OBJECTIVE:
Exposure to high intensity, low frequency noise (HI-LFN) causes vibroacoustic disease (VAD), with memory deficit as a primary non-auditory symptomatic effect of VAD. However, the underlying mechanism of the memory deficit is unknown. This study aimed to characterize potential mechanisms involving morphological changes of neurons and nerve fibers in the hippocampus, after exposure to HI-LFN.
METHODS:
Adult wild-type and transient receptor potential vanilloid subtype 4 knockout (TRPV4-/-) mice were used for construction of the HI-LFN injury model. The new object recognition task and the Morris water maze test were used to measure the memory of these animals. Hemoxylin and eosin and immunofluorescence staining were used to examine morphological changes of the hippocampus after exposure to HI-LFN.
RESULTS:
The expression of TRPV4 was significantly upregulated in the hippocampus after HI-LFN exposure. Furthermore, memory deficits correlated with lower densities of neurons and neurofilament-positive nerve fibers in the cornu ammonis 1 (CA1) and dentate gyrus (DG) hippocampal areas in wild-type mice. However, TRPV4-/- mice showed better performance in memory tests and more integrated neurofilament-positive nerve fibers in the CA1 and DG areas after HI-LFN exposure.
CONCLUSION
TRPV4 up-regulation induced neurofilament positive nerve fiber injury in the hippocampus, which was a possible mechanism for memory impairment and cognitive decline resulting from HI-LFN exposure. Together, these results identified a promising therapeutic target for treating cognitive dysfunction in VAD patients.
Animals
;
Mice
;
TRPV Cation Channels/metabolism*
;
Intermediate Filaments/metabolism*
;
Hippocampus/metabolism*
;
Neurons/metabolism*
;
Memory Disorders/metabolism*
5.Research progress of the regulatory role of autophagy in metabolic liver diseases.
Yu Xian LI ; Feng REN ; Yu CHEN
Chinese Journal of Hepatology 2023;31(1):105-108
Autophagy is one of several hepatic metabolic processes in which starved cells are supplied with glucose, free fatty acids, and amino acids to produce energy and synthesize new macromolecules. Moreover, it regulates the quantity and quality of mitochondria and other organelles. As the liver is a vital metabolic organ, specific forms of autophagy are necessary for maintaining liver homeostasis. Protein, fat, and sugar are the three primary nutrients that can be altered by different metabolic liver diseases. Drugs that have an effect on autophagy can either promote or inhibit autophagy, and as a result, it can either increase or inhibit the three major nutritional metabolisms that are affected by liver disease. Thus, this opens up a novel therapeutic option for liver disease.
Humans
;
Liver/metabolism*
;
Liver Diseases
;
Autophagy
;
Metabolic Diseases
;
Mitochondria
6.A novel defined risk signature of endoplasmic reticulum stress-related genes for predicting the prognosis and immune infiltration status of ovarian cancer.
Jiahang MO ; Shunyi RUAN ; Baicai YANG ; Yunfeng JIN ; Keyi LIU ; Xukai LUO ; Hua JIANG
Journal of Zhejiang University. Science. B 2023;24(1):64-77
Endoplasmic reticulum (ER) stress, as an emerging hallmark feature of cancer, has a considerable impact on cell proliferation, metastasis, invasion, and chemotherapy resistance. Ovarian cancer (OvCa) is one of the leading causes of cancer-related mortality across the world due to the late stage of disease at diagnosis. Studies have explored the influence of ER stress on OvCa in recent years, while the predictive role of ER stress-related genes in OvCa prognosis remains unexplored. Here, we enrolled 552 cases of ER stress-related genes involved in OvCa from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts for the screening of prognosis-related genes. The least absolute shrinkage and selection operator (LASSO) regression was applied to establish an ER stress-related risk signature based on the TCGA cohort. A seven-gene signature revealed a favorable predictive efficacy for the TCGA, International Cancer Genome Consortium (ICGC), and another GEO cohort (P<0.001, P<0.001, and P=0.04, respectively). Moreover, functional annotation indicated that this signature was enriched in cellular response and senescence, cytokines interaction, as well as multiple immune-associated terms. The immune infiltration profiles further delineated an immunologic unresponsive status in the high-risk group. In conclusion, ER stress-related genes are vital factors predicting the prognosis of OvCa, and possess great application potential in the clinic.
Humans
;
Female
;
Ovarian Neoplasms/genetics*
;
Cell Proliferation
;
Cytokines
;
Endoplasmic Reticulum Stress/genetics*
7.Lyciumbarbarum polysaccharides ameliorate canine acute liver injury by reducing oxidative stress, protecting mitochondrial function, and regulating metabolic pathways.
Jianjia HUANG ; Yuman BAI ; Wenting XIE ; Rongmei WANG ; Wenyue QIU ; Shuilian ZHOU ; Zhaoxin TANG ; Jianzhao LIAO ; Rongsheng SU
Journal of Zhejiang University. Science. B 2023;24(2):157-171
The development of acute liver injury can result in liver cirrhosis, liver failure, and even liver cancer, yet there is currently no effective therapy for it. The purpose of this study was to investigate the protective effect and therapeutic mechanism of Lyciumbarbarum polysaccharides (LBPs) on acute liver injury induced by carbon tetrachloride (CCl4). To create a model of acute liver injury, experimental canines received an intraperitoneal injection of 1 mL/kg of CCl4 solution. The experimental canines in the therapy group were then fed LBPs (20 mg/kg). CCl4-induced liver structural damage, excessive fibrosis, and reduced mitochondrial density were all improved by LBPs, according to microstructure data. By suppressing Kelch-like epichlorohydrin (ECH)-associated protein 1 (Keap1), promoting the production of sequestosome 1 (SQSTM1)/p62, nuclear factor erythroid 2-related factor 2 (Nrf2), and phase II detoxification genes and proteins downstream of Nrf2, and restoring the activity of anti-oxidant enzymes like catalase (CAT), LBPs can restore and increase the antioxidant capacity of liver. To lessen mitochondrial damage, LBPs can also enhance mitochondrial respiration, raise tissue adenosine triphosphate (ATP) levels, and reactivate the respiratory chain complexes I‒V. According to serum metabolomics, the therapeutic impact of LBPs on acute liver damage is accomplished mostly by controlling the pathways to lipid metabolism. 9-Hydroxyoctadecadienoic acid (9-HODE), lysophosphatidylcholine (LysoPC/LPC), and phosphatidylethanolamine (PE) may be potential indicators of acute liver injury. This study confirmed that LBPs, an effective hepatoprotective drug, may cure acute liver injury by lowering oxidative stress, repairing mitochondrial damage, and regulating metabolic pathways.
Animals
;
Dogs
;
Antioxidants/metabolism*
;
Carbon Tetrachloride
;
Chemical and Drug Induced Liver Injury/drug therapy*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Liver
;
Metabolic Networks and Pathways
;
Mitochondria/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress
;
Polysaccharides/pharmacology*
;
Lycium/chemistry*
8.Distinct mononuclear diploid cardiac subpopulation with minimal cell-cell communications persists in embryonic and adult mammalian heart.
Miaomiao ZHU ; Huamin LIANG ; Zhe ZHANG ; Hao JIANG ; Jingwen PU ; Xiaoyi HANG ; Qian ZHOU ; Jiacheng XIANG ; Ximiao HE
Frontiers of Medicine 2023;17(5):939-956
A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM-fibroblast (FB) communications and one maintaining MNDCM status with least CM-FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell-cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4+Tnni1+ MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell-cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.
Animals
;
Mice
;
Diploidy
;
Heart
;
Myocytes, Cardiac/metabolism*
;
Cell Communication
;
Gene Expression Profiling
;
Mitochondria
;
Regeneration
;
Mammals/genetics*
9.Research on the mechanism of mechanical ventilation induced endoplasmic reticulum stress promoting mechanical ventilation-induced pulmonary fibrosis.
Ri TANG ; Jinhua FENG ; Shuya MEI ; Qiaoyi XU ; Yang ZHOU ; Shunpeng XING ; Yuan GAO ; Zhengyu HE ; Zhiyun ZHANG
Chinese Critical Care Medicine 2023;35(11):1171-1176
OBJECTIVE:
To demonstrate the mechanism of mechanical ventilation (MV) induced endoplasmic reticulum stress (ERS) promoting mechanical ventilation-induced pulmonary fibrosis (MVPF), and to clarify the role of angiotensin receptor 1 (AT1R) during the process.
METHODS:
The C57BL/6 mice were randomly divided into four groups: Sham group, MV group, AT1R-shRNA group and MV+AT1R-shRNA group, with 6 mice in each group. The MV group and MV+AT1R-shRNA group mechanically ventilated for 2 hours after endotracheal intubation to establish MVPF animal model (parameter settings: respiratory rate 70 times/minutes, tidal volume 20 mL/kg, inhated oxygen concentration 0.21). The Sham group and AT1R-shRNA group only underwent intubation after anesthesia and maintained spontaneous breathing. AT1R-shRNA group and MV+AT1R-shRNA group were airway injected with the adeno-associated virus one month before modeling to inhibit AT1R gene expression in lung tissue. The expressions of AT1R, ERS signature proteins [immunoglobulin heavy chain-binding protein (BIP), protein disulfide isomerase (PDI)], fibrosis signature proteins [collagen I (COL1A1), α-smooth muscle actin (α-SMA)] in lung tissues were detected by immunofluorescence and Western blotting. Hematoxylin-eosin (HE) staining was used to evaluate lung injury and Masson staining was used to evaluate pulmonary fibrosis.
RESULTS:
Compared with the Sham group, the degree of pulmonary fibrosis and lung injury were more significant in the MV group. In the MV group, the protein expressions of AT1R, BIP, PDI, COL1A1 and α-SMA were increased (AT1R/β-actin: 1.40±0.02 vs. 1, BIP/β-actin: 2.79±0.07 vs. 1, PDI/β-actin: 2.07±0.02 vs. 1, COL1A1/α-Tubulin: 2.60±0.15 vs. 1, α-SMA/α-Tubulin: 2.80±0.25 vs. 1, all P < 0.01). The number of E-cad+/AT1R+ and E-cad+/BIP+ cells in lung tissue increased, and the fluorescence intensity of COL1A1 and α-SMA increased. Compared with the MV group, the degree of pulmonary fibrosis and lung injury were significantly relieved in the MV+AT1R-shRNA group. In the MV+AT1R-shRNA group, the protein expressions of AT1R, BIP, PDI, COL1A1 and α-SMA were decreased (AT1R/β-actin: 0.53±0.03 vs. 1.40±0.02, BIP/β-actin: 1.73±0.15 vs. 2.79±0.07, PDI/β-actin: 1.04±0.07 vs. 2.07±0.02, COL1A1/α-Tubulin: 1.29±0.11 vs. 2.60±0.15, α-SMA/α-Tubulin: 1.27±0.10 vs. 2.80±0.25, all P < 0.01). The number of E-cad+/AT1R+ and E-cad+/BIP+ cells in lung tissue decreased, and the fluorescence intensity of COL1A1 and α-SMA decreased. There was no statistically significant difference in the indicators between AT1R-shRNA group and Sham group.
CONCLUSIONS
MV up-regulate the expression of AT1R in alveolar epithelial cells, activate the AT1R pathway, induce ERS and promote the progression of MVPF.
Mice
;
Animals
;
Pulmonary Fibrosis/chemically induced*
;
Lung Injury
;
Respiration, Artificial/adverse effects*
;
Actins/metabolism*
;
Tubulin
;
Mice, Inbred C57BL
;
Endoplasmic Reticulum Stress
;
RNA, Small Interfering
10.Research advances on the role of ACSL3 in the atherosclerosis.
Acta Physiologica Sinica 2023;75(4):587-594
Lipids droplets are organelles that store neutral lipids and are closely related to lipid accumulation. Long chain acyl-coenzyme A synthetase 3 (ACSL3) is a lipid droplet-associated protein mainly distributed in the cell membrane, endoplasmic reticulum, and intracellular lipid droplets, and its distribution depends on cell type and fatty acid supply. ACSL3 is a key regulator of fatty acid metabolism that is closely related to intracellular lipid accumulation, and plays an important role in various pathophysiological processes such as lipid droplet synthesis and lipid metabolism, cellular inflammation, and ferroptosis. This paper mainly reviews the role of ACSL3 in lipid synthesis, ferroptosis, and inflammatory response, with focus on the mechanism of its role in lipid accumulation in atherosclerosis, and provides new ideas for exploring potential therapeutic targets in atherosclerotic diseases.
Humans
;
Atherosclerosis
;
Coenzyme A Ligases/metabolism*
;
Endoplasmic Reticulum/metabolism*
;
Fatty Acids/metabolism*
;
Lipid Metabolism

Result Analysis
Print
Save
E-mail