1.Molecular Characterization and Correlation with β-lactam Resistance of Streptococcus pneumonia Isolates in Hangzhou, China.
Mei Fen CHU ; Xiao Xiang LIU ; Shao Ni ZHANG ; Yan Ying HUANG ; Peng DU ; Li Fang WANG ; Lei JI ; Jie YAN ; Ai Hua SUN
Biomedical and Environmental Sciences 2018;31(5):389-393
Penicillin-binding proteins (PBPs) are the target of β-lactam antibiotics (the major treatment for Streptococcus pneumoniae infections), and mutations in PBPs are considered as a primary mechanism for the development of β-lactam resistance in S. pneumoniae. This study was conducted to investigate the mutations in the PBPs of clinical S. pneumoniae isolates in Hangzhou, China, in correlation with β-lactam resistance. Results showed that 19F was the predominant serotype (7/27) and 14 of the S. pneumoniae isolates were resistant to both penicillin G and cephalosporin. Genotyping results suggested that β-lactam-resistant isolates primarily exhibited single-site mutations in both the STMK and SRNVP motifs of pbp1a in combination with double-site mutations in the STMK motif of pbp2x, which might be the primary mechanisms underlying the β-lactam resistance of the isolates in this study.
Anti-Bacterial Agents
;
pharmacology
;
China
;
epidemiology
;
Drug Resistance, Bacterial
;
Humans
;
Pneumococcal Infections
;
epidemiology
;
microbiology
;
Streptococcus pneumoniae
;
drug effects
;
genetics
;
beta-Lactams
;
pharmacology
2.Synergistic Anti-bacterial Effects of Phellinus baumii Ethyl Acetate Extracts and beta-Lactam Antimicrobial Agents Against Methicillin-Resistant Staphylococcus aureus.
Seung Bok HONG ; Man Hee RHEE ; Bong Sik YUN ; Young Hoon LIM ; Hyung Geun SONG ; Kyeong Seob SHIN
Annals of Laboratory Medicine 2016;36(2):111-116
BACKGROUND: The development of new drugs or alternative therapies effective against methicillin-resistant Staphylococcus aureus (MRSA) is of great importance, and various natural anti-MRSA products are good candidates for combination therapies. We evaluated the antibacterial activities of a Phellinus baumii ethyl acetate extract (PBEAE) and its synergistic effects with beta-lactams against MRSA. METHODS: The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the PBEAE. The PBEAE synergistic effects were determined by evaluating the MICs of anti-staphylococcal antibiotic mixtures, with or without PBEAE. Anti-MRSA synergistic bactericidal effects of the PBEAE and beta-lactams were assessed by time-killing assay. An ELISA was used to determine the effect of the PBEAE on penicillin binding protein (PBP)2a production. RESULTS: The MICs and MBCs of PBEAE against MRSA were 256-512 and 1,024-2,048 microg/mL, respectively. The PBEAE significantly reduced MICs of all beta-lactams tested, including oxacillin, cefazolin, cefepime, and penicillin. However, the PBEAE had little or no effect on the activity of non-beta-lactams. Time-killing assays showed that the synergistic effects of two beta-lactams (oxacillin and cefazolin) with the PBEAE were bactericidal in nature (Deltalog10 colony forming unit/mL at 24 hr: 2.34-2.87 and 2.10-3.04, respectively). The PBEAE induced a dose-dependent decrease in PBP2a production by MRSA, suggesting that the inhibition of PBP2a production was a major synergistic mechanism between the beta-lactams and the PBEAE. CONCLUSIONS: PBEAE can enhance the efficacy of beta-lactams for combined therapy in patients infected with MRSA.
Acetates/chemistry
;
Agaricales/*chemistry/metabolism
;
Anti-Infective Agents/chemistry/*pharmacology
;
Drug Synergism
;
Enzyme-Linked Immunosorbent Assay
;
Methicillin-Resistant Staphylococcus aureus/*drug effects/metabolism
;
Microbial Sensitivity Tests
;
Penicillin-Binding Proteins/analysis/metabolism
;
Plant Extracts/chemistry/*pharmacology
;
beta-Lactams/*pharmacology
3.HSP90 Inhibitor 17-AAG Inhibits Multiple Myeloma Cell Proliferation by Down-regulating Wnt/β-Catenin Signaling Pathway.
Kan-Kan CHEN ; Zheng-Mei HE ; Bang-He DING ; Yue CHEN ; Li-Juan ZHANG ; Liang YU ; Jian GAO
Journal of Experimental Hematology 2016;24(1):117-121
OBJECTIVETo investigate the inhibitory effect of HSP90 inhibitory 17-AAG on proliferation of multiple myeloma cells and its main mechanism.
METHODSThe multiple myeloma cells U266 were treated with 17-AAG of different concentrations (200, 400, 600 and 800 nmol/L) for 24, 48, and 72 hours respectively, then the proliferation rate, expression levels of β-catenin and C-MYC protein, as well as cell cycle of U266 cells were treated with 17-AAG and were detected by MTT method, Western blot and flow cytometry, respectively.
RESULTSThe 17-AAG showed inhibitory effect on the proliferation of U266 cells in dose- and time-depetent manners (r = -0.518, P < 0.05 and r = -0.473, P < 0.05), while the culture medium without 17-AAG displayed no inhibitory effect on proliferation of U266 cells (P > 0.05). The result of culturing U266 cells for 72 hours by 17-AAG of different concentrations showed that the more high of 17-AAG concentration, the more low level of β-catenin and C-MYC proteins (P < 0.05); At same time of culture, the more high of 17-AAG concentration, the more high of cell ratio in G1 phase (P < 0.05), at same concentration of 17-AAG, the more long time of culture, the more high of cell ratio in G1 phase (P < 0.05).
CONCLUSIONThe HSP90 inhibitory 17-AAG can inhibit the proliferation of multiple myeloma cells, the down-regulation of Wnt/β-catenin signaling pathway and inhibition of HSP90 expression may be the main mechnisms of 17-AAG effect.
Apoptosis ; Benzoquinones ; pharmacology ; Cell Cycle ; Cell Division ; Cell Line, Tumor ; drug effects ; Cell Proliferation ; drug effects ; Down-Regulation ; HSP90 Heat-Shock Proteins ; antagonists & inhibitors ; Humans ; Lactams, Macrocyclic ; pharmacology ; Multiple Myeloma ; metabolism ; pathology ; Proto-Oncogene Proteins c-myc ; metabolism ; Wnt Signaling Pathway ; drug effects ; beta Catenin ; metabolism
4.Analysis of the carbapenemase-producing mechanism of Enterobacteriaceae with decreased susceptibility to carbapenems.
Tingting WANG ; Dongdong LI ; Chuanmin TAO ; Yi XIE ; Mei KANG ; Zhixing CHEN
Journal of Southern Medical University 2013;33(11):1600-1604
OBJECTIVETo analyze the distribution of Enterobacteriaceae isolated from West China Hospital, investigate the antibiotic resistance profile of Enterobacteriaceae with decreased susceptibility to carbapenems and explore the molecular mechanism.
METHODSForty-five Enterobacteriaceae strains resistant or with reduced susceptibility to carbapenems were isolated from patients in West China Hospital. The antimicrobial susceptibility and carbapenemase-producing phenotypes of the bacteria were examined and specific PCR were performed to determine the molecular mechanism.
RESULTSOf the 45 isolates, 17, 21 and 36 were resistant or intermediate strains to imipenem, meropenem and ertapenem, respectively. The majority of these isolates showed resistance to cephalosporins. The modified Hodge test resulted in the highest positivity rate (77.8%), followed by EDTA disc test (57.8%) and PBA disc test (22.2%). BlaTEM, blaSHV and blaCTX-M were detected in 60.0%, 53.3% and 15.6% of these strains with reduced susceptibility. The rate of strains carrying 2 or more genes was 44.4%, and the detection rate of blaIMP was 48.9%. BlaKPC was identified in 4 (8.9%) high-level resistant strains and confirmed to locate on the plasmid.
CONCLUSIONProduction of carbapenemase contributes to reduced susceptibility of carbapenems in Enterobacteriaceae. The presence of blaKPC, MBL and ESBL, and their possible combinations can be the main factor contributing to carbapenem resistance or reduced susceptibility in Enterobacteriaceae. The KPC-2 carbapenemase gene located on the plasmids we found in this study can cause potential horizontal transmission across strains.
Anti-Bacterial Agents ; pharmacology ; Bacterial Proteins ; genetics ; metabolism ; Carbapenems ; pharmacology ; Cephalosporins ; pharmacology ; Enterobacteriaceae ; drug effects ; enzymology ; genetics ; Gene Amplification ; Imipenem ; pharmacology ; Microbial Sensitivity Tests ; Polymerase Chain Reaction ; Thienamycins ; pharmacology ; beta-Lactam Resistance ; beta-Lactamases ; genetics ; metabolism ; beta-Lactams ; pharmacology
5.Recent progress in development of antibiotics against Gram-negative bacteria.
Acta Pharmaceutica Sinica 2013;48(7):993-1004
Multidrug-resistant (MDR) bacterial infections, especially those caused by Gram-negative pathogens, have emerged to be one of the world's greatest health threats. However, not only have recent decades shown a steady decline in the number of approved antimicrobial agents but a disappointing discovery also void. The development of novel antibiotics to treat MDR Gram-negative bacteria has been stagnated over the last half century. Though few compounds have shown activities in vitro, in animal models or even in clinical studies, the global antibiotic pipeline is not encouraging. There are a plethora of unexpected challenges that may arise and cannot always be solved to cause promising drugs to fail. This review intends to summarize recent research and development activities to meet the inevitable challenge in restricting the proliferation of MDR Gram-negative bacteria, with focus on compounds that have entered into clinical development stage. In addition to new analogues of existing antibiotic molecules, attention is also directed to alternative strategies to develop antibacterial agents with novel mechanisms of action.
Aminoglycosides
;
pharmacology
;
therapeutic use
;
Animals
;
Anti-Bacterial Agents
;
pharmacology
;
therapeutic use
;
Antibodies, Monoclonal
;
pharmacology
;
therapeutic use
;
Drug Discovery
;
Drug Resistance, Multiple, Bacterial
;
Enzyme Inhibitors
;
pharmacology
;
therapeutic use
;
Ferrous Compounds
;
pharmacology
;
therapeutic use
;
Gram-Negative Bacteria
;
drug effects
;
Gram-Negative Bacterial Infections
;
drug therapy
;
Humans
;
Peptides
;
pharmacology
;
therapeutic use
;
Peptidomimetics
;
pharmacology
;
therapeutic use
;
Tetracyclines
;
pharmacology
;
therapeutic use
;
beta-Lactamase Inhibitors
;
beta-Lactams
;
pharmacology
;
therapeutic use
6.Novel inhibitors against the bacterial signal peptidase I.
Guo-Jian LIAO ; Ying HE ; Jian-Ping XIE
Acta Pharmaceutica Sinica 2012;47(12):1561-1566
New antibiotics with novel modes of action and structures are urgently needed to combat the emergence of multidrug-resistant bacteria. Bacterial signal peptidase I (SPase I) is an indispensable enzyme responsible for cleaving the signal peptide of preprotein to release the matured proteins. Increasing evidence suggests that SPase I plays a crucial role in bacterial pathogenesis by regulating the excretion of a variety of virulent factors, maturation of quorum sensing factor and the intrinsic resistance against beta-lactams. Recently, breakthrough has been achieved in the understanding of three-dimensional structure of SPase I as well as the mechanism of enzyme-inhibitors interaction. Three families of inhibitors are identified, i.e. signal peptide derivatives, beta-lactams and arylomycins. In this article, we summarize the recent advance in the study of structure, activity and structure-activity relationship of SPase I inhibitors.
Animals
;
Anti-Bacterial Agents
;
pharmacology
;
Bacteria
;
drug effects
;
Escherichia coli
;
drug effects
;
Membrane Proteins
;
antagonists & inhibitors
;
metabolism
;
Oligopeptides
;
chemistry
;
pharmacology
;
Serine Endopeptidases
;
metabolism
;
Serine Proteinase Inhibitors
;
chemistry
;
pharmacology
;
Structure-Activity Relationship
;
beta-Lactams
;
antagonists & inhibitors
7.Effects of amino acid substitutions of penicillin-binding proteins 2B, 1A, 2X on minimal inhibitory concentration of beta-lactams against Streptococcus pneumoniae.
Min XU ; Jian-hua ZHANG ; Yun-fang DING ; Yun-zhen TAO ; Zi-cai WANG
Chinese Journal of Pediatrics 2010;48(1):60-64
OBJECTIVETo observe the effect of amino acid substitution in conserved sequence of penicillin-binding protein (PBP) 1A, 2B, 2X on antimicrobial activity of beta-lactams against Streptococcus pneumoniae (SP).
METHODMinimal inhibitory concentration (MIC) of 6 beta-lactams was determined by the E-test in 59 SP strains. The penicillin-binding protein genes pbp1a, 2b, 2x in every SP strain were amplified by nested-polymerase chain reaction (nPCR), then the PCR products were sequenced using automatic genetic analyzer directly. To analyze the amino acid substitutions, the DNA sequences were converted to protein sequences and aligned by Clustalx software. According to amino acid substitution in conserved sequence of PBP2B, 3 phenotypes were observed, including: PBP2B phenotype I (no amino acid substitution); PBP2B phenotype II (Glutamine 432-->Leucine and/or Threonine 445/451-->Alanine/Serine, Glutamic 481-->Glycine, 1 strain had proline insertion between residues 431/432); PBP2B phenotype III (Alanine 624-->Glycine with the addition of phenotype II). According to amino acid substitution in conserved sequence of PBP1A, 3 phenotypes were observed, including: PBP1A phenotype I (no amino acid substitution); PBP1A phenotype II (Threonine 574-->Asparagine, Serine 575-->Threonine, Glutamine 576-->Glycine, Phenylalanine 577-->Tyrosine, 574TSQF-->NTGY); PBP1A III (Threonine 371-->Alanine/Serine, Proline 432-->Threonine with the addition of 574TSQF-->NTGY). According to amino acid substitution in conserved sequence of PBP2X, 4 phenotypes were observed, including: PBP2X phenotype I (no amino acid substitution); PBP2X phenotype II (Histidine 394-->Leucine or Threonine 338-->Alanine); PBP2X phenotype III (Threonine 338-->Alanine, Isoleucine 371-->Threonine, Arginine 384-->Glycine and Leucine 546-->Valine); PBP2X phenotype IV (Methionine 339-->Phenylalanine, Methionine 400-->Threonine with the addition of PBP2X phenotype III).
RESULTAmong 59 SP strains antibacterial activities distribution (sensitive strains, intermediate strains and resistant strains) of 6 beta-lactams were penicillin (12, 29, 18); amoxicillin(49, 9, 1); cefuroxime (16, 16, 27); ceftriaxone (47, 1, 11); cefotaxime (47, 3, 9); imipenem (49, 10, 0). beta-lactam antibiotics insensitive strains (intermediate + resistant strain) in PBP2B phenotype III, PBP1A phenotype III, PBP2X phenotype III and IV were significantly increased, the MIC(50) of these strains were significantly higher than that of the others.
CONCLUSIONThe amino acid substitutions in or vicinal conserved sequence of PBP of SP increase MIC for beta-lactam antibiotics.
Amino Acid Substitution ; Aminoacyltransferases ; genetics ; Anti-Bacterial Agents ; pharmacology ; Bacterial Proteins ; genetics ; Microbial Sensitivity Tests ; Penicillin-Binding Proteins ; genetics ; Peptidyl Transferases ; genetics ; Streptococcus pneumoniae ; drug effects ; beta-Lactam Resistance ; genetics ; beta-Lactams ; pharmacology
8.Outbreaks of Imipenem Resistant Acinetobacter Baumannii Producing OXA-23 beta-Lactamase in a Tertiary Care Hospital in Korea.
Hee Young YANG ; Hee Joo LEE ; Jin Tae SUH ; Kyeong Min LEE
Yonsei Medical Journal 2009;50(6):764-770
PURPOSE: Since November 2006, imipenem-resistant Acinetobacter baumannii isolates have increased in Kyung Hee University Hospital in Seoul, Korea. The purpose of this study was to determine the genetic basis and molecular epidemiology of outbreak isolates. MATERIALS AND METHODS: Forty-nine non-repetitive isolates of the 734 IRAB strains were investigated in order to determine their characteristics. The modified Hodge and the ethylenediaminetetraacetic acid (EDTA)-disk synergy test were performed for the screening of carbapenemase and metallo-beta-lactamase production. Multiplex polymerase chain reaction (PCR) assays were performed for the detection of genes encoding for OXA-23-like, OXA-24-like, OXA-58-like and OXA-51-like carbapenemase. Pulsed-field gel electrophoresis (PFGE) was performed for strain identification. RESULTS: All isolates showed 100% resistance to ciprofloxacin and gentamicin, 97.9% resistance to cefepime, piperacillin/tazobactam, aztreonam, ceftazidime and piperacillin, 93.9% resistance to tobramycin and 57.1% resistance to amikacin. All of the 49 isolates (100%) showed positive results in the modified Hodge test and negative results in the EDTA-disk synergy test. They all (100%) possessed the encoding gene for an intrinsic OXA-51-like carbapenemase and an acquired OXA-23-like carbapenemase in the multiplex PCR assay. PFGE patterns revealed that all isolates were clonally related from A1 to A14. CONCLUSION: It is concluded that all of the 49 IRAB isolates acquired resistance to imipenem by producing OXA-23 carbapenemase and they might have originated from a common source.
Acinetobacter Infections/epidemiology/*microbiology
;
Acinetobacter baumannii/*drug effects/genetics
;
Anti-Bacterial Agents/*pharmacology
;
Cephalosporins/pharmacology
;
Ciprofloxacin/pharmacology
;
Disease Outbreaks
;
Drug Resistance, Multiple, Bacterial/genetics/physiology
;
Electrophoresis, Gel, Pulsed-Field
;
Gentamicins/pharmacology
;
Humans
;
Imipenem/*pharmacology
;
Korea/epidemiology
;
Microbial Sensitivity Tests
;
beta-Lactamases/genetics/*metabolism
;
beta-Lactams/*pharmacology
9.Extended-spectrum beta-Lactamases: Implications for the Clinical Laboratory and Therapy.
Sohei HARADA ; Yoshikazu ISHII ; Keizo YAMAGUCHI
The Korean Journal of Laboratory Medicine 2008;28(6):401-412
Production of extended-spectrum beta-lactamase (ESBL) is one of the most important resistance mechanisms that hamper the antimicrobial treatment of infections caused by Enterobacteriaceae. ESBLs are classified into several groups according to their amino-acid sequence homology. While TEM and SHV enzymes were the most common ESBLs in the 1990s, CTX-M enzymes have spread rapidly among Enterobacteriaceae in the past decade. In addition, some epidemiological studies showed that organisms producing CTX-M enzymes had become increasingly prevalent in the community setting in certain areas in the world. Several novel enzymes with hydrolyzing activity against oxyimino-cephalosporins, albeit with additional enzymatic characteristics different from those of original TEM and SHV ESBLs (e.g., inhibitor-resistance), have been discovered and pose a problem on the definition of ESBLs. Although several methods to detect the production of ESBL are available in clinical laboratories, existence of other factors contributing resistance against beta-lactams, e.g., inducible production of Amp-C beta-lactamase by some species of Enterobacteriaceae, or inhibitor-resistance in some ESBLs may hinder the detection of ESBLs with these methods. Carbapenems are stable against hydrolyzing activity of ESBLs and are regarded as the drug of choice for the treatment of infections caused by ESBL-producing Enterobacteriaceae. Although several other antimicrobial agents, such as fluoroquinolones and cephamycins, may have some role in the treatment of mild infections due to those organisms, clinical data that warrant the use of antimicrobial agents other than carbapenems in the treatment of serious infections due to those organisms are scarce for now.
Anti-Bacterial Agents/*pharmacology/therapeutic use
;
Carbapenems/pharmacology/therapeutic use
;
Disk Diffusion Antimicrobial Tests
;
Enterobacteriaceae/drug effects/*enzymology/genetics
;
Enterobacteriaceae Infections/*drug therapy/microbiology
;
Fluoroquinolones/pharmacology/therapeutic use
;
Humans
;
Microbial Sensitivity Tests/methods
;
beta-Lactamases/*biosynthesis/metabolism
;
beta-Lactams/*pharmacology/therapeutic use
10.Optimization of antibiotics in combination.
Li-Hua ZHANG ; Ling-Feng WANG ; Zhao-Yan MENG ; Qing-Ping YU ; Bai-Qing GAO ; Te BA ; Xiao-Dong WANG ; Wen-Hui MA ; Yao-Yu LI ; Jun ZHANG
Chinese Journal of Burns 2008;24(2):93-96
OBJECTIVETo evaluate the antibacterial activity of Ciprofloxacin, Amikacin in combination with beta-lactams against Pseudomonas aeruginosa strains in vitro, to optimize treatment regime for antibiotics on the basis of pharmacokinetics (PK)/pharmacodynamics (PD) and drug sensitivity tests. Methods With checkerboard titration method, the minimal inhibitory concentrations (MIC) of a combination of antibiotics in different concentrations for 33 clinically isolated Pseudomonas aeruginosa strains were determined by broth dilution. Fractional inhibitory concentrations (FIC) were calculated for judging synergic effect of antibiotics.
RESULTSThe combination of Amikacin and Ceftazidime showed synergic effects (accounting for 57.6%). The combinations of Ciprofloxacin with Ceftazidime, Cefepime, Imipenem/Cilastatin, Meropenem showed synergic or additive effect. In the study with PK/PD, C(max)/MIC was the principal parameters for evaluation of aminoglycoside and fluoroquinolone antibiotics, while T > MIC was the principal parameter to be used to evaluate beta-lactams antibiotics.
CONCLUSIONWhen antibiotics are used in combination, MICs can be reduced significantly and antibacterial activities are enhanced remarkably. The combination of antibiotics results mainly in synergic or additive effect, and no inhibitory effect is observed. PK/PD analysis plays an important role in planning optimal combination regime to raise clinical efficacy.
Amikacin ; pharmacokinetics ; pharmacology ; Anti-Bacterial Agents ; pharmacokinetics ; pharmacology ; Burn Units ; Ciprofloxacin ; pharmacokinetics ; pharmacology ; Drug Therapy, Combination ; Humans ; Intensive Care Units ; Microbial Sensitivity Tests ; Pseudomonas aeruginosa ; drug effects ; isolation & purification ; beta-Lactams ; pharmacokinetics ; pharmacology

Result Analysis
Print
Save
E-mail