1.Effect of β-cyclodextrin inclusion complex on transport of major components of Xiangfu Siwu decoction essential oil in Caco-2 cell monolayer model.
Jun-zuan XI ; Da-wei QIAN ; Jin-ao DUAN ; Pei LIU ; Yue ZHU ; Zhen-hua ZHU ; Li ZHANG
China Journal of Chinese Materia Medica 2015;40(15):2970-2974
Although the essential oil of Xiangfu Siwu decoction (XFSWD) has strong pharmacological activity, its special physical and chemical properties restrict the clinical application and curative effect. In this paper, Xiangfu Siwu decoction essential oil (XFS-WO) was prepared by forming inclusion complex with β-cyclodextrin (β-CD). The present study is to investigate the effect of β-CD inclusion complex on the transport of major components of XFSWO using Caco-2 cell monolayer model, thus to research the effect of this formation on the absorption of drugs with low solubility and high permeability, which belong to class 2 in biopharmaceutics classification system. A sensitive and rapid UPLC-MS/MS method was developed for simultaneous quantification of senkyunolide A, 3-n-butylphthalide, Z-ligustilide, dehydrocostus lactone and α-cyperone, which are active compounds in XFSWO. The transport parameters were analyzed and compared in free oil and its β-CD inclusion complex. The result revealed that the formation of XFSWO/β-CD inclusion complex has significantly increased the transportation and absorption of major active ingredients than free oil. Accordingly, it can be speculated that cyclodextrin inclusion complex can improve bioavailability of poorly water-soluble drugs. Above all these mentioned researches, it provided foundation and basis for physiological disposition and pharmaceutical study of XFSWD.
Biological Transport
;
Caco-2 Cells
;
Drugs, Chinese Herbal
;
analysis
;
Humans
;
Oils, Volatile
;
analysis
;
beta-Cyclodextrins
;
pharmacology
2.Effects end mechanisms of curcumol beta-cyclodextrin compound on the proliferation and apoptosls of esophageal carcinoma cell line TE-1.
Zhao JING ; Cong-Ying XIE ; Zhi-Qin WU ; Fang XU ; Chang-Lin ZOU
Chinese Journal of Integrated Traditional and Western Medicine 2013;33(1):85-89
OBJECTIVETo investigate the effects and mechanisms of Curcumol beta-cyclodextrin Compound (CbetaC) on the proliferation and apoptosis of esophageal carcinoma cell line TE-1.
METHODSThe CbetaC was prepared by saturated solution and confirmed by infrared absorption spectroscopy. The effects of CbetaC (at 25, 50, 100 mg/L) on the proliferation of human esophageal carcinoma cell line TE-1 in vitro was analyzed by MTT assay. The cell cycles and apoptosis were detected by flow cytometer. The relative expression of survivin mRNA was detected by real-time fluorescent quantitative PCR and calculated by the 2(-deltaCt) method. The protein expression of survivin was measured by Western blot.
RESULTSCompared with the control group, results of MTT showed that CbetaC at each dose significantly inhibited the proliferation of TE-1 cells in a dose-dependent manner (P < 0.05). The results of flow cytometry showed that CbetaC resulted in the cell cycle arrest at G0/G1 and G2/M phase, and promoted the cell apoptosis. Besides, when compared with the control group, the protein and mRNA expressions of survivin obviously decreased in each CbetaC group (P < 0.05).
CONCLUSIONSCbetaC could inhibit the proliferation of esophageal carcinoma cell TE-1 and promote the apoptosis. Its inhibition on the survivin expression was correlated with its inhibition on the malignant phenotypes of esophageal carcinoma cells.
Apoptosis ; drug effects ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Esophageal Neoplasms ; pathology ; Humans ; Sesquiterpenes ; pharmacology ; beta-Cyclodextrins ; pharmacology
3.Cholesterol Depletion in Cell Membranes of Human Airway Epithelial Cells Suppresses MUC5AC Gene Expression.
Kee Jae SONG ; Na Hyun KIM ; Gi Bong LEE ; Ji Hoon KIM ; Jin Ho KWON ; Kyung Su KIM
Yonsei Medical Journal 2013;54(3):679-685
PURPOSE: If cholesterol in the cell membrane is depleted by treating cells with methyl-beta-cyclodextrin (MbetaCD), the activities of transmembrane receptors are altered in a cell-specific and/or receptor-specific manner. The proinflammatory cytokines, IL-1beta is potent inducers of MUC5AC mRNA and protein synthesis in human airway epithelial cells. Cells activated by IL-1beta showed increased phosphorylation of extracellular signal regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). Thus, we investigated the effects of cholesterol depletion on the expression of MUC5AC in human airway epithelial cells and whether these alterations to MUC5AC expression were related to MAPK activity. MATERIALS AND METHODS: After NCI-H292 cells were pretreated with 1% MbetaCD before adding IL-1beta for 24 hours, MUC5AC mRNA expression was determined by reverse transcription-polymerase chain reaction (RT-PCR) and real time-PCR. Cholesterol depletion by MbetaCD was measured by modified microenzymatic fluorescence assay and filipin staining. The phosphorylation of IL-1 receptor, ERK and p38 MAPK, was analyzed by western blot. RESULTS: Cholesterol in the cell membrane was significantly depleted by treatment with MbetaCD on cells. IL-1beta-induced MUC5AC mRNA expression was decreased by MbetaCD and this decrease occurred IL-1-receptor-specifically. Moreover, we have shown that MbetaCD suppressed the activation of ERK1/2 and p38 MAPK in cells activated with IL-1beta. This result suggests that MbetaCD-mediated suppression of IL-1beta-induced MUC5AC mRNA operated via the ERK- and p38 MAPK-dependent pathway. CONCLUSION: Cholesterol depletion in NCI-H292 cell membrane may be considered an anti-hypersecretory method since it effectively inhibits mucus secretion of respiratory epithelial cells.
Cell Membrane/drug effects/*metabolism
;
Cholesterol/*metabolism
;
Epithelial Cells/metabolism
;
Gene Expression
;
Humans
;
Mucin 5AC/genetics/*metabolism
;
Respiratory System/*metabolism/pathology
;
beta-Cyclodextrins/pharmacology
4.Synthesis of a supermolecular nanoparticle γ-hy-PC/Ada-Dox and its antitumor activity.
Yong-bin LI ; Kai WANG ; Tian-nan HU ; Qi-wen WANG ; Qi-da HU ; Jun ZHOU ; Xiu-rong HU ; Gu-ping TANG
Journal of Zhejiang University. Medical sciences 2012;41(6):599-609
OBJECTIVETo synthesize a (2-Hydroxypropyl)-γ-cyclodextrin-polyethylenimine/adamantane-conjugated doxorubicin (γ-hy-PC/Ada-Dox) based supramolecular nanoparticle with host-guest interaction and to identify its physicochemical characterizations and antitumor effect.
METHODSA novel non-viral gene delivery vector γ-hy-PC/Ada-Dox was synthesized based on host-guest interaction. 1H-NMR, NOESY, UV-Vis, XRD and TGA were used to confirm the structure of the vector. The DNA condensing ability of complexes was investigated by particle size, zeta potential and gel retardation assay. Cytotoxicity of complexes was determined by MTT assay in BEL-7402 and SMMC-7721 cells. Cell wound healing assay was performed in HEK293 and BEL-7404 cells. The transfection efficiency was investigated in HEK293 cells. H/E staining and cell uptake assay was performed in BEL-7402 cells.
RESULTSThe structure of γ-hy-PC/Ada-Dox was characterized by 1H-NMR, NOESY, UV-Vis, XRD, TGA. The drug loading was 0.5% and 5.5%. Gel retardation assay showed that γ-hy-PC was able to completely condense DNA at N/P ratio of 2; 0.5% and 5.5% γ-hy-PC/Ada-Dox was able to completely condense DNA at N/P ratio of 3 and 4,respectively. The cytotoxicity of polymers was lower than that of PEI25KDa. The transfection efficiency of γ-hy-PC was higher than that of γ-hy-PC/Ada-Dox at N/P ratio of 30 in HEK293 cells; and the transfection efficiency was decreasing when Ada-Dox loading was increasing. Cell uptake assay showed that γ-hy-PC/Ada-Dox was able to carry drug and FAM-siRNA into cells.
CONCLUSIONThe novel vector γ-hy-PC/Ada-Dox has been developed successfully, which has certain transfection efficiency and antitumor activity.
2-Hydroxypropyl-beta-cyclodextrin ; Adamantane ; administration & dosage ; pharmacology ; Antineoplastic Agents ; administration & dosage ; pharmacology ; Cell Line, Tumor ; Doxorubicin ; administration & dosage ; pharmacology ; Genetic Vectors ; Humans ; Nanoparticles ; Polyethyleneimine ; Transfection ; beta-Cyclodextrins
5.Anandamide inhibits the growth of colorectal cancer cells through CB1 and lipid rafts.
Yu-Sheng LIAO ; Jie WU ; Ping WANG ; Heng ZHANG
Chinese Journal of Oncology 2011;33(4):256-259
OBJECTIVETo study the influences of endocannabinoid-anandamide (AEA) on the proliferation and apoptosis of the colorectal cancer cell line (CaCo-2) and to elucidate the effects of CB1 and lipid rafts, and to further elucidate the molecular mechanism and the effect of AEA on the generation and development of colorectal cancer.
METHODSHuman colorectal cancer cell line CaCo-2 was cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum in 5% CO(2) atmosphere at 37°C. CaCo-2 cells were divided into different groups and treated with different concentrations of AEA, AEA + SR141716A, AEA + AM630 and AEA + methyl-β-cyclodextrin (MCD). MTT assay was used to determine the effects of AEA, its putative CB1, CB2 receptor antagonists (SR141716A and AM630) and MCD on the proliferation of CaCo-2 cells. Annexin V-PE/7AAD binding assay was used to detect apoptosis in the CaCo-2 cells. Western-blot was applied to check the expressions of CB1, CB2, p-AKT and caspase-3 proteins in different groups of CaCo-2 cells.
RESULTSAEA inhibited the proliferation of CaCo-2 cells in a concentration-dependent manner and the effect could be antagonized by SR141716A and MCD. The inhibiting rates were (21.52 ± 0.45)%, (42.16 ± 0.21)%, (73.64 ± 0.73)% and (83.28 ± 0.71)%, respectively, at different concentrations of AEA (5, 10, 20 and 40 µmol/L). The three groups (20 µmol/L AEA, 20 µmol/L AEA + 10 µmol/L SR141716A and 20 µmol/L AEA + 1 mmol/L MCD) showed different inhibiting rates [(73.64 ± 0.73)%, (16.15 ± 0.75)% and (12.58 ± 0.63)%], respectively. Annexin V-PE/7AAD binding assay showed that AEA induced apoptosis in the CaCo-2 cells and MCD could antagonize this effect. The apoptosis rates of the three groups (control, 20 µmol/L AEA and 20 µmol/L AEA + 1 mmol/L MCD) were (2.95 ± 0.73)%, (39.61 ± 0.73)% and (14.10 ± 0.64)%, respectively. The expressions of CB1, CB2, p-AKT and Caspase-3 proteins were all observed in the CaCo-2 cells. AEA inhibited p-AKT protein expression and induced caspase-3 protein expression. The two actions were also antagonized by MCD.
CONCLUSIONSAEA can strongly suppress the proliferation of colorectal cancer CaCo-2 cells via the CB1 receptor and membrane cholesterol-LRs and induce apoptosis via lipid rafts. Anandamide plays a very important role in the carcinogenesis and development of colorectal cancer. MCD is a critical member in this system.
Antineoplastic Agents ; pharmacology ; Apoptosis ; drug effects ; Arachidonic Acids ; antagonists & inhibitors ; pharmacology ; Caco-2 Cells ; Cannabinoid Receptor Modulators ; antagonists & inhibitors ; pharmacology ; Caspase 3 ; metabolism ; Cell Proliferation ; drug effects ; Dose-Response Relationship, Drug ; Endocannabinoids ; Humans ; Indoles ; pharmacology ; Membrane Microdomains ; metabolism ; Piperidines ; pharmacology ; Polyunsaturated Alkamides ; antagonists & inhibitors ; pharmacology ; Proto-Oncogene Proteins c-akt ; metabolism ; Pyrazoles ; pharmacology ; Receptor, Cannabinoid, CB1 ; antagonists & inhibitors ; metabolism ; Receptor, Cannabinoid, CB2 ; antagonists & inhibitors ; metabolism ; beta-Cyclodextrins ; metabolism
6.Membrane cholesterol mediates the endocannabinoids-anandamide affection on HepG2 cells.
Wen-Jie WU ; Qiao YANG ; Qin-Fang CAO ; Yao-Wen ZHANG ; Yu-Jia XIA ; Xiao-Wen HU ; Wang-Xian TANG
Chinese Journal of Hepatology 2010;18(3):204-208
OBJECTIVETo study the effect of anandamide (AEA) on necrosis in HepG2 cells and to explore the role of AEA in progression of liver cancer.
METHODSLocalization of the fatty acid hydrolytic enzyme (FAAH), cannabinoid receptors 1(CB1) and cannabinoid receptors 2 (CB2) proteins was detected in L02 and HepG2 cells using immunofluorescence. L02 and HepG2 cells were treated with different concentrations of AEA and methyl-beta-cyclodextrin, and the rates of cells necrosis were examined by PI stain. Meanwhile, the expression levels of FAAH, CB1 and CB2 receptor proteins, as well as P38 mitogen-activated protein kinase (p-P38 MAPK) and c-Jun-NH2-terminal kinase (p-JNK) proteins, were analyzed by Western blot.
RESULTSThe FAAH, CB1 and CB2 receptor proteins were observed both in cytoplasm and on membrane in L02 and HepG2 cells. The expression level of FAAH protein was higher in HepG2 than in L02 cells. The expression level of CB1 receptor protein was very low in both L02 and HepG2 cells. The expression level of CB2 receptor protein was high in both L02 and HepG2 cells. AEA treatment induced necrosis in HepG2 cells but not in L02 cells. Methyl-beta-cyclodextrin treatment prevented necrosis in HepG2 cells (t = 3.702; 5.274; 3.503, P less than 0.05). The expression patterns of FAAH, CB1 and CB2 receptor protein in L02 and HepG2 cells were confirmed by western blot, which were consistent with the immunofluorescence results. AEA treatment increased the levels of p-P38MAPK and p-JNK proteins in a dose-dependent manner in HepG2 cells (F = 11.908; 26.054, P less than 0.05) and the increase can be partially by prevented by MCD (t = 2.801; t = 12.829, P less than 0.05).
CONCLUSIONAEA treatment induces necrosis in HepG2 cells via CB1 and CB2 receptors and lipid rafts.
Amidohydrolases ; metabolism ; Arachidonic Acids ; pharmacology ; Cannabinoid Receptor Modulators ; pharmacology ; Cholesterol ; metabolism ; Endocannabinoids ; Hep G2 Cells ; Humans ; JNK Mitogen-Activated Protein Kinases ; metabolism ; Necrosis ; Polyunsaturated Alkamides ; pharmacology ; Receptor, Cannabinoid, CB1 ; metabolism ; Receptor, Cannabinoid, CB2 ; metabolism ; Signal Transduction ; beta-Cyclodextrins ; pharmacology ; p38 Mitogen-Activated Protein Kinases ; metabolism
7.GD3 Accumulation in Cell Surface Lipid Rafts Prior to Mitochondrial Targeting Contributes to Amyloid-beta-induced Apoptosis.
Jong Kook KIM ; Sang Ho KIM ; Hee Young CHO ; Hee Soo SHIN ; Hye Ryen SUNG ; Jin Ran JUNG ; Mei Lian QUAN ; Dong Hong JIANG ; Hae Rahn BAE
Journal of Korean Medical Science 2010;25(10):1492-1498
Neuronal apoptosis induced by amyloid beta-peptide (A beta) plays an important role in the pathophysiology of Alzheimer's disease (AD). However, the molecular mechanism underlying A beta-induced apoptosis remains undetermined. The disialoganglioside GD3 involves ceramide-, Fas- and TNF-alpha-mediated apoptosis in lymphoid cells and hepatocytes. Although the implication of GD3 has been suggested, the precise role of GD3 in A beta-induced apoptosis is still unclear. Here, we investsigated the changes of GD3 metabolism and characterized the distribution and trafficking of GD3 during A beta-induced apoptosis using human brain-derived TE671 cells. Extracellular A beta induced apoptosis in a mitochondrial-dependent manner. GD3 level was negligible in the basal condition. However, in response to extracellular A beta, both the expression of GD3 synthase mRNA and the intracellular GD3 level were dramatically increased. Neosynthesized GD3 rapidly accumulated in cell surface lipid microdomains, and was then translocated to mitochondria to execute the apoptosis. Disruption of membrane lipid microdomains with methyl-beta-cyclodextrin significantly prevented both GD3 accumulation in cell surface and A beta-induced apoptosis. Our data suggest that rapidly accumulated GD3 in plasma membrane lipid microdomains prior to mitochondrial translocation is one of the key events in A beta-induced apoptosis.
Amyloid beta-Peptides/*pharmacology
;
*Apoptosis
;
Cell Line
;
Gangliosides/*metabolism/physiology
;
Humans
;
Membrane Microdomains/*metabolism
;
Mitochondria/*metabolism
;
Sialyltransferases/genetics/metabolism
;
beta-Cyclodextrins/pharmacology
8.Preparation of floxuridine loaded polycation and its antitumor activity.
Dan-Jun ZHAO ; Xiao LU ; Qi-Ying JIANG ; Dan CHEN ; Jun ZHOU ; Hai YU ; Qing-Qing WANG ; Gu-Ping TANG
Journal of Zhejiang University. Medical sciences 2009;38(1):53-58
OBJECTIVETo develop a new prodrug of 5-fluorouracil-polyethylenimine-beta-cyclodextrin-floxuridine (PEI-beta-CyD-Fd) and to test its antitumor activity.
METHODSFloxuridine was conjugated to polyethylenimine-beta-cyclodextrin to form prodrug PEI-beta-CyD-Fd. The structure of synthesized PEI-beta-CyD-Fd was confirmed by (1)H-NMR, FT-IR and UV. MTT assay and cell wound healing assay were performed on human hepatic carcinoma cell line HepG2.
RESULTThe drug loading was 2 %. The MTT assay and cell wound healing assay indicated that PEI-beta-CyD-Fd significantly inhibited proliferation and migration of HepG2 cells.
CONCLUSIONThe synthesized prodrug PEI-CyD-Fd has a significant antitumor activity on HepG2 cells.
Antimetabolites, Antineoplastic ; chemical synthesis ; pharmacology ; Cell Line, Tumor ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Floxuridine ; pharmacology ; Fluorouracil ; pharmacology ; Humans ; Liver Neoplasms ; pathology ; Polyethyleneimine ; pharmacology ; Prodrugs ; chemical synthesis ; pharmacology ; beta-Cyclodextrins ; pharmacology
9.Peptide MC10 mediated PEI-beta-CyD as a gene delivery vector targeting to Her-2 receptor.
Jun LIU ; Yi-Ping HU ; Qi-Ying JIANG ; Dan CHEN ; Hai YU ; Qing-Qing WANG ; Gu-Ping TANG
Journal of Zhejiang University. Medical sciences 2009;38(1):7-14
OBJECTIVETo develop a novel non-viral gene delivery vector based on polyethylenimine and beta-cyclodextrin targeting to Her-2 receptor (MC10-PEI-beta-CyD).
METHODSThe PEI-beta-CyD was synthesized by low molecular weight polyethylenimine (PEI, Mw 600) cross-linked beta-cyclodextrin (beta-CyD) via N, N-carbonyldiimidazole (CDI). The chemical linker[N-succinimidy-3-(2-pyridyldithio) propionate, SPDP] was used to bind peptide MC10 (MARAKEGGGC) to PEI-beta-CyD to form the vector MC10-PEI-beta-CyD. The (1)H-NMR was used to confirm the structure of vector. The DNA condensing ability,and the particle size of MC10-PEI-beta-CyD/DNA complexes were demonstrated by gel retardation assay and electron microscope observation (TEM). Cell viability was tested by MTT assay. The transfection efficiency was determined on cultured SKOV-3, A549 and MCF-7 cells.
RESULTMC10 was linked onto PEI-beta-CyD successfully. The vector was able to condense DNA at N/P ratio of 5 and particle size was about (170 +/-35)nm. The vector showed low cytotoxicity and high transfection efficiency in cultured SKOV-3, A549 and MCF-7 cells.
CONCLUSIONA novel non-viral vector MC10-PEI-beta-CyD with low cytotoxicity and high transfection efficiency has been successfully synthesized.
Cell Line ; Gene Targeting ; Gene Transfer Techniques ; Genetic Vectors ; Humans ; Peptides ; chemistry ; Polyethyleneimine ; chemistry ; pharmacology ; Receptor, ErbB-2 ; genetics ; beta-Cyclodextrins ; chemistry
10.Advances in the study of excipient inhibitors of intestinal P-glycoprotein.
Fang YAN ; Lu-Qin SI ; Jian-Geng HUANG ; Gao LI
Acta Pharmaceutica Sinica 2008;43(11):1071-1076
P-glycoprotein (P-gp) located in the apicalmembranes of intestinal absorptive cells is an energy-dependent efflux pump which can reduce the bioavailability of a wide range of substrate drugs. There is increasingly interest in enhancing the bioavailability of these molecules by inhibiting intestinal P-gp. A classification of excipient inhibitors of intestinal P-gp nonionic surfactants, poly (ethylene glycol), derivates of beta-cyclodextrin and thiolated chitosan will be presented and then the inhibition mechanism will be discussed. Compared with traditional P-gp inhibitor, excipient inhibitors appear to have minimal nonspecific pharmacological activity, thus potential side effects can be mostly avoided. These excipient inhibitors, which hold the promise of replacing the traditional ones, will be extensively employed to significantly improve the intestinal absorption of poorly soluble and absorbed drugs as a result of P-gp inhibition, and thus to enhance the bioavailability of these drugs. However, the further studies of both the mechanism and clinical application are urgently needed.
ATP-Binding Cassette, Sub-Family B, Member 1
;
antagonists & inhibitors
;
pharmacokinetics
;
Animals
;
Biological Availability
;
Chitin
;
analogs & derivatives
;
pharmacology
;
Excipients
;
pharmacology
;
Glycerol
;
analogs & derivatives
;
pharmacology
;
Humans
;
Intestinal Absorption
;
drug effects
;
Polyethylene Glycols
;
pharmacology
;
Surface-Active Agents
;
pharmacology
;
beta-Cyclodextrins
;
pharmacology

Result Analysis
Print
Save
E-mail