1.Asperuloside Promotes Apoptosis of Cervical Cancer Cells through Endoplasmic Reticulum Stress-Mitochondrial Pathway.
Zhi-Min QI ; Xia WANG ; Xia LIU ; Juan ZHAO
Chinese journal of integrative medicine 2024;30(1):34-41
OBJECTIVE:
To investigate the effects of asperuloside on cervical cancer based on endoplasmic reticulum (ER) stress and mitochondrial pathway.
METHODS:
Different doses (12.5-800 µg/mL) of asperuloside were used to treat cervical cancer cell lines Hela and CaSki to calculate the half maximal inhibitory concentration (IC50) of asperuloside. The cell proliferation was analyzed by clone formation assay. Cell apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were determined by flow cytometry. The protein expressions of cleaved-caspase-3, Bcl-2, Bax, Cyt-c, cleaved-caspase-4 and glucose-regulated protein 78 (GRP78) were analyzed by Western blot. And the inhibitor of ER stress, 4-phenyl butyric acid (4-PBA) was used to treat cervical cancer cells to further verify the role of ER stress in the apoptosis of cervical cancer cells induced by asperuloside.
RESULTS:
Asperuloside of 325, 650, and 1300 µg/mL significantly inhibited the proliferation and promoted apoptosis of Hela and CaSki cells (P<0.01). All doses of asperuloside significantly increased intracellular ROS levels, reduced mitochondrial membrane potential, significantly reduced Bcl-2 protein expression level, and increased Bax, Cyt-c, GRP78 and cleaved-caspase-4 expressions (P<0.01). In addition, 10 mmol/L 4-PBA treatment significantly promoted cell proliferation and reduced apoptosis (P<0.05), and 650 µg/mL asperuloside could reverse 4-PBA-induced increased cell proliferation, decreased apoptosis and cleaved-caspase-3, -4 and GRP78 protein expressions (P<0.05).
CONCLUSION
Our study revealed the role of asperuloside in cervical cancer, suggesting that asperuloside promotes apoptosis of cervical cancer cells through ER stress-mitochondrial pathway.
Female
;
Humans
;
Uterine Cervical Neoplasms/metabolism*
;
Caspase 3/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Endoplasmic Reticulum Chaperone BiP
;
HeLa Cells
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Endoplasmic Reticulum Stress
;
Cell Line, Tumor
2.Baicalin attenuates dexamethasone-induced apoptosis of bone marrow mesenchymal stem cells by activating the hedgehog signaling pathway.
Bin JIA ; Yaping JIANG ; Yao YAO ; Yingxing XU ; Yingzhen WANG ; Tao LI
Chinese Medical Journal 2023;136(15):1839-1847
BACKGROUND:
Perturbations in bone marrow mesenchymal stem cell (BMSC) differentiation play an important role in steroid-induced osteonecrosis of the femoral head (SONFH). At present, studies on SONFH concentrate upon the balance within BMSC osteogenic and adipogenic differentiation. However, BMSC apoptosis as well as proliferation are important prerequisites in their differentiation. The hedgehog (HH) signaling pathway regulates bone cell apoptosis. Baicalin (BA), a well-known compound in traditional Chinese medicine, can affect the proliferation and apoptosis of numerous cell types via HH signaling. However, the potential role and mechanisms of BA on BMSCs are unclear. Thus, we aimed to explore the role of BA in dexamethasone (Dex)-induced BMSC apoptosis in this study.
METHODS:
Primary BMSCs were treated with 10 -6 mol/L Dex alone or with 5.0 μmol/L, 10.0 μmol/L, or 50.0 μmol/L BA for 24 hours followed by co-treatment with 5.0 μmol/L, 10.0 μmol/L, or 50.0 μmol/L BA and 10 -6 mol/L Dex. Cell viability was assayed through the Cell Counting Kit-8 (CCK-8). Cell apoptosis was evaluated using Annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining followed by flow cytometry. The imaging and counting, respectively, of Hochest 33342/PI-stained cells were used to assess the morphological characteristics and proportion of apoptotic cells. To quantify the apoptosis-related proteins (e.g., apoptosis regulator BAX [Bax], B-cell lymphoma 2 [Bcl-2], caspase-3, and cleaved caspase-3) and HH signaling pathway proteins, western blotting was used. A HH-signaling pathway inhibitor was used to demonstrate that BA exerts its anti-apoptotic effects via the HH signaling pathway.
RESULTS:
The results of CCK-8, Hoechst 33342/PI-staining, and flow cytometry showed that BA did not significantly promote cell proliferation (CCK-8: 0 μmol/L, 100%; 2.5 μmol/L, 98.58%; 5.0 μmol/L, 95.18%; 10.0 μmol/L, 98.11%; 50.0 μmol/L, 99.38%, F = 2.33, P > 0.05), but it did attenuate the effect of Dex on apoptosis (Hoechst 33342/PI-staining: Dex+ 50.0 μmol/L BA, 12.27% vs. Dex, 39.27%, t = 20.62; flow cytometry: Dex + 50.0 μmol/L BA, 12.68% vs. Dex, 37.43%, t = 11.56; Both P < 0.05). The results of western blotting analysis showed that BA reversed Dex-induced apoptosis by activating the HH signaling pathway, which down-regulated the expression of Bax, cleaved-caspase 3, and suppressor of fused (SUFU) while up-regulating Bcl-2, sonic hedgehog (SHH), and zinc finger protein GLI-1 (GLI-1) expression (Bax/Bcl-2: Dex+ 50.0 μmol/L BA, 1.09 vs. Dex, 2.76, t = 35.12; cleaved caspase-3/caspase-3: Dex + 50.0 μmol/L BA, 0.38 vs . Dex, 0.73, t = 10.62; SHH: Dex + 50.0 μmol/L BA, 0.50 vs . Dex, 0.12, t = 34.01; SUFU: Dex+ 50.0 μmol/L BA, 0.75 vs . Dex, 1.19, t = 10.78; GLI-1: Dex+ 50.0 μmol/L BA, 0.40 vs . Dex, 0.11, t = 30.68. All P < 0.05).
CONCLUSIONS
BA antagonizes Dex-induced apoptosis of human BMSCs by activating the HH signaling pathway. It is a potential candidate for preventing SONFH.
Humans
;
Hedgehog Proteins/metabolism*
;
bcl-2-Associated X Protein
;
Caspase 3/metabolism*
;
Signal Transduction/physiology*
;
Apoptosis
;
Apoptosis Regulatory Proteins/pharmacology*
;
Dexamethasone/pharmacology*
;
Mesenchymal Stem Cells/metabolism*
;
Bone Marrow Cells
3.Forkhead Box M1 Regulates the Proliferation,Invasion,and Drug Resistance of Gastric Cancer Cells via circ_NOTCH1.
Ning GE ; Yuan-Yuan JIANG ; Zhong-Ping PAN ; Jie WAN
Acta Academiae Medicinae Sinicae 2023;45(5):713-720
Objective To investigate the impacts of forkhead box M1(FOXM1)on the proliferation,invasion,and drug resistance of gastric cancer cells by regulating the circular RNA circ_NOTCH1.Methods Western blotting and real-time quantitative PCR were performed to determine the expression of FOXM1 protein and circ_NOTCH1,respectively,in the gastric cancer tissue,para-carcinoma tissue,human normal gastric mucosa epithelial cell line GES-1 and gastric cancer cell lines MGC-803,HGC-27,and BGC-823.BGC-823 cells were classified into the following groups:control,short hairpin RNA FOXM1(sh-FOXM1)and negative control(sh-NC),small interfering RNA circ_NOTCH1(si-circ_NOTCH1)and negative control(si-NC),and sh-FOXM1+circ_NOTCH1 overexpression plasmid(sh-FOXM1+pcDNA-circ_NOTCH1)and sh-FOXM1+negative control(sh-FOXM1+pcDNA).CCK-8 assay and clone formation assay were employed to measure the cell proliferation,and Transwell assay to measure cell invasion.After treatment with 1.0 mg/L adriamycin for 48 h,the cell resistance in each group was analyzed.Western blotting was employed to determine the expression levels of FOXM1,proliferating cell nuclear antigen(PCNA),Bax,multi-drug resistance-associated protein 1(MRP1),and multi-drug resistance gene 1(MDR1).RNA pull-down and RNA immunoprecipitation were employed to examine the binding of circ_NOTCH1 to FOXM1 protein.Results Compared with those in the para-carcinoma tissue,the expression levels of FOXM1 protein and circ_NOTCH1 in the gastric cancer tissue were up-regulated(all P<0.001).Compared with GES-1 cells,MGC-803,HGC-27,and BGC-823 cells showed up-regulated expression levels of FOXM1 protein and circ_NOTCH1(all P<0.001).Compared with the control group and sh-NC group,the sh-FOXM1 group with down-regulated expression of FOXM1 protein and circ_NOTCH1 showed decreased optical density value,clone formation rate,cell invasion number,and cell viability,down-regulated expression of PCNA,MRP1,and MDR1,and up-regulated expression of Bax protein in BGC-823 cells(all P<0.001).Compared with the control group and the si-NC group,the si-circ_NOTCH1 group with down-regulated expression of circ_NOTCH1 showed decreased optical density value,clone formation rate,cell invasion number,and cell viability,down-regulated expression of PCNA,MRP1,and MDR1,and up-regulated expression of Bax protein in BGC-823 cells(all P<0.001).Compared with sh-FOXM1 group and sh-FOXM1+pcDNA group,the sh-FOXM1+pcDNA-circ_NOTCH1 group with up-regulated expression of circ_NOTCH1 showed increased optical density value,clone formation rate,cell invasion number,and cell viability,up-regulated expression of PCNA,MRP1,and MDR1,and down-regulated expression of Bax protein(all P<0.001).FOXM1 protein was able to interact with circ_NOTCH1.Conclusion Interference with FOXM1 may inhibit the proliferation,invasion,and drug resistance of gastric cancer cells by silencing circ_NOTCH1 expression.
Humans
;
bcl-2-Associated X Protein/metabolism*
;
Carcinoma
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Drug Resistance
;
Forkhead Box Protein M1/metabolism*
;
Gene Expression Regulation, Neoplastic
;
MicroRNAs/genetics*
;
Proliferating Cell Nuclear Antigen/metabolism*
;
Receptor, Notch1/metabolism*
;
RNA, Small Interfering/genetics*
;
Stomach Neoplasms/genetics*
4.Mechanism of albiflorin in improvement of Alzheimer's disease based on network pharmacology and in vitro experiments.
Hui XUE ; Jing JIANG ; Yue ZHANG ; Xue-Tong MENG ; Ao XUE ; Yue QIAO ; Xia LEI ; Ji-Hui ZHAO ; Ning ZHANG
China Journal of Chinese Materia Medica 2023;48(17):4738-4746
This study aimed to explore the mechanism of albiflorin in the treatment of Alzheimer's disease(AD) based on network pharmacology, molecular docking, and in vitro experiments. Network pharmacology was used to predict the potential targets and pathways of albiflorin against AD, and molecular docking technology was used to verify the binding affinity of albiflorin to key target proteins. Finally, the AD cell model was induced by Aβ_(25-35) in rat pheochromocytoma(PC12) cells and intervened by albiflorin to validate core targets and pathways. The results of network pharmacological analysis showed that albiflorin acted on key targets such as mitogen-activated protein kinase-1(MAPK1 or ERK2), albumin(ALB), epidermal growth factor receptor(EGFR), caspase-3(CASP3), and sodium-dependent serotonin transporter(SLC6A4), and signaling pathways such as MAPK, cAMP, and cGMP-PKG. The results of molecular docking showed that albiflorin had strong binding affinity to MAPK1(ERK2). In vitro experiments showed that compared with the blank group, the model group showed decreased cell viability, decreased expression level of B-cell lymphoma 2(Bcl-2), increased Bcl-2-associated X protein(Bax), and reduced phosphorylation level of extracellular signal-regulated kinase 1/2(ERK1/2) and the relative expression ratio of p-ERK1/2 to ERK1/2. Compared with the model group, the albiflorin group showed potentiated cell viability, up-regulated expression of Bcl-2, down-regulated Bax, and increased phosphorylation level of ERK1/2 and the relative expression ratio of p-ERK1/2 to ERK1/2. These results suggest that the mechanism of albiflorin against AD may be related to its activation of the MAPK/ERK signaling pathway and its inhibition of neuronal apoptosis.
Animals
;
Rats
;
Alzheimer Disease/drug therapy*
;
bcl-2-Associated X Protein
;
Network Pharmacology
;
Molecular Docking Simulation
5.Qirong Tablets inhibits apoptosis of ovarian granulosa cells via PI3K/Akt/ HIF-1 signaling pathway.
Nan NAN ; Xiao-Li DU ; Miao CHEN ; Jia-Qi LUO
China Journal of Chinese Materia Medica 2023;48(17):4774-4781
This study aims to observe the effect and explore the mechanism of Qirong Tablets in the treatment of premature ovarian insufficiency(POI) in mice via the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/hypoxia inducible factor 1(HIF-1) signaling pathway. Sixty SPF female BALB/c mice were randomly divided into normal group, model group, positive control group, Qirong Tablets low-, medium-and high-dose group. The normal group was intraperitoneally injected with the same amount of normal saline, and the other groups were intraperitoneally injected with cyclophosphamide 120 mg·kg~(-1)·d~(-1) once to establish a POI animal model. After the model was successfully established, the low-, medium-and high-dose groups of Qirong Tablets were administered orally with 0.6, 1.2, 2.4 mg·kg~(-1)·d~(-1) respectively. The positive control group was given 0.22 mg·kg~(-1)·d~(-1) Clementine Tablets by intragastric administration, and the normal group and model group were given intragastric administration with the same amount of normal saline, and the treatment was 28 d as a course of treatment. After drug intervention, enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of estradiol(E_2), follicle-stimulating hormone(FSH), luteinizing hormone(LH), and anti-mullerian hormone(AMH) in peripheral blood, and hematoxylin-eosin(HE) staining to observe the ovarian tissue. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) assay was used to detect the apoptosis of granulosa cells, and Western blot to determine the expression levels of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), caspase-3, PI3K, Akt, and HIF-1. Compared with the normal group, the modeling of POI caused loose or destroyed ovarian tissue with vacuolar structures, edema and fibrosis in the ovarian interstitium, disordered or loose arrangement of granulosa cells, and reduced normal follicles. Compared with the model group, drug interventions restored the ovarian tissue and follicles at all the development stages and reduced atretic follicles. Compared with the normal group, the modeling of POI lowered the serum level of E_2 and AMH(P<0.01), and elevated the level of FSH and LH(P<0.01). Compared with the model group, high-dose Qirong Tablets elevated the levels of E_2 and AMH(P<0.05), and lowered the levels of FSH and LH(P<0.05). Compared with the normal group, the modeling of POI up-regulated the protein levels of PI3K, Akt, HIF-1, Bax, and caspase-3 and down-regulated the protein level of Bcl-2 in the ovarian tissue(P<0.01). Compared with the model group, low-, medium-, and high-dose Qirong Tablets down-regulated the protein levels of PI3K, Akt, HIF-1, Bax, and caspase-3 proteins and up-regulated the protein level of Bcl-2 in the ovarian tissue(P<0.05). In conclusion, Qirong Tablets can up-regulate the expression Bcl-2, down-regulate the expression of Bax and caspase-3 in POI mice. Qirong Tablets may inhibit the apoptosis of follicular granulosa cells in mice, thereby delaying ovarian aging, improving reproductive axis function, and strengthening ovarian reserve capacity, which may be associated with the inhibition of PI3K/Akt/HIF-1 pathway.
Humans
;
Mice
;
Female
;
Animals
;
Proto-Oncogene Proteins c-akt/metabolism*
;
bcl-2-Associated X Protein
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Caspase 3/metabolism*
;
Saline Solution/therapeutic use*
;
Signal Transduction
;
Granulosa Cells
;
Primary Ovarian Insufficiency/drug therapy*
;
Follicle Stimulating Hormone/therapeutic use*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
6.Saikosaponin D regulates apoptosis and autophagy of pancreatic cancer Panc-1 cells via Akt/mTOR pathway.
Yue-Hong GUAN ; Gui-Mei LIU ; Yu-Si LIU ; Lin-Bo LAN ; Rui ZHENG ; Xiao-Bin LIU
China Journal of Chinese Materia Medica 2023;48(19):5278-5284
This study aims to investigate the effect and mechanism of saikosaponin D on the proliferation, apoptosis, and autophagy of pancreatic cancer Panc-1 cells. The cell counting kit(CCK-8) was used to examine the effects of 7, 10, 13, 16, 19, 22, 25, and 28 μmol·L~(-1) saikosaponin D on the proliferation of Panc-1 cells. Three groups including the control(0 μmol·L~(-1)), low-concentration(10 μmol·L~(-1)) saikosaponin D, and high-concentration(16 μmol·L~(-1)) saikosaponin D groups were designed. The colony formation assay was employed to measure the effect of saikosaponin D on the colony formation rate of Panc-1 cells. The cells treated with saikosaponin D were stained with hematoxylin-eosin(HE), and the changes of cell morphology were observed. Hoechst 33258 fluorescent staining was used to detect the effect of saikosaponin D on the cell apoptosis. The autophagy staining assay kit with MDC was used to examine the effect of saikosaponin D on the autophagy of Panc-1 cells. Western blot and immunocytochemistry(ICC) were employed to examine the effect of saikosaponin D on the expression levels and distribution of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cysteine-aspartic acid protease-3(caspase-3), cleaved caspase-3, autophagy-associated protein Beclin1, microtubule-associated protein light chain 3(LC3), protein kinase B(Akt), phosphorylated protein kinase B(p-Akt), mammalian target of rapamycin(mTOR), and phosphorylated mammalian target of rapamycin(p-mTOR). The results showed that compared with the control group, saikosaponin D decreased the proliferation rate of Panc-1 cells in a dose-dependent and time-dependent manner. The colony formation rate of the cells significantly decreased after saikosaponin D treatment. Compared with the control group, the cells treated with saikosaponin D became small, accompanied by the formation of apoptotic bodies. The saikosaponin D groups showed increased apoptosis rate and autophagic vesicle accumulation. Compared with the control group, saikosaponin D up-regulated the expression of Bax, cleaved caspase3, Beclin1, LC3Ⅱ/LC3Ⅰ and down-regulated the expression of Bcl-2, caspase-3, p-Akt/Akt, and p-mTOR/mTOR. In addition, these proteins mainly existed in the cytoplasm. In conclusion, saikosaponin D can inhibit the proliferation and induce the apoptosis and autophagy of Panc-1 cells via inhibiting the Akt/mTOR pathway.
Humans
;
Proto-Oncogene Proteins c-akt/genetics*
;
Caspase 3
;
bcl-2-Associated X Protein
;
Beclin-1/pharmacology*
;
Cell Line, Tumor
;
TOR Serine-Threonine Kinases/genetics*
;
Apoptosis
;
Pancreatic Neoplasms/drug therapy*
;
Caspases
;
Autophagy
7.Blaps rynchopetera combined with cyclophosphamide affects proliferation and apoptosis of lung cancer cells via Wnt/β-catenin signaling pathway.
Jing-Nan YAN ; Ke MA ; Wen-Jie LIU ; Ying LIN ; Xiu-Yu LI ; Dan WU
China Journal of Chinese Materia Medica 2023;48(20):5603-5611
This study aims to investigate the effects of Blaps rynchopetera Fairmaire and/or cyclophosphamide on the proliferation and apoptosis of lung cancer cells and decipher the underlying mechanism. B. rynchopetera and cyclophosphamide-containing serum and blank serum were prepared from SD rats. Cell counting kit-8(CCK-8) assay was employed to examine the proliferation of lung cancer cell lines A549 and Lewis treated with corresponding agents. The Jin's formula method was used to evaluate the combined effect of the two drugs. According to the evaluation results, appropriate drug concentrations and lung cancer cell line were selected for subsequent experiments, which included control, B. rynchopetera, cyclophosphamide, B. rynchopetera + cyclophosphamide, and B. rynchopetera + Wnt/β-catenin pathway agonist lithium chloride(LiCl) groups. Immunocytochemistry was employed to measure the expression of proliferation-related proteins in Lewis cells after drug interventions. Flow cytometry was employed to determine the cell cycle and apoptosis. The expression levels of proliferating cell nuclear antigen(PCNA), cyclinD1, B-cell lymphoma 2(Bcl-2), Bcl-2-assiocated X protein(Bax), Wnt1, and β-catenin were determined by Western blot. The results showed that B. rynchopetera and/or cyclophosphamide significantly inhibited the proliferation of A549 and Lewis cells. Compared with B. rynchopetera alone, the combination increased the inhibition rate on cell proliferation. The combination of B. rynchopetera and cyclophosphamide demonstrated a synergistic effect according to Jin's formula-based evaluation. Compared with the control group, the B. rynchopetera, cyclophosphamide, and B. rynchopetera + cyclophosphamide groups showed increased proportion of Lewis cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. Compared with the cyclophosphamide group, the combination group showed increased proportion of cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. Compared with the B. rynchopetera group, the B. rynchopetera + LiCl group had deceased proportion of cells in G_0/G_1 phase, decreased apoptosis rate, down-regulated expression of Bax, and up-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. The results indicated that B. rynchopetera could inhibit the proliferation, arrest the cell cycle, and induce the apoptosis of lung cancer cells by inhibiting the Wnt/β-catenin signaling pathway. Moreover, B. rynchopetera had a synergistic effect with cyclophosphamide.
Rats
;
Animals
;
Wnt Signaling Pathway
;
Lung Neoplasms/genetics*
;
beta Catenin/metabolism*
;
Proliferating Cell Nuclear Antigen
;
bcl-2-Associated X Protein/metabolism*
;
Rats, Inbred Lew
;
Rats, Sprague-Dawley
;
Apoptosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Proliferation
;
Cyclophosphamide
;
Cell Line, Tumor
8.Effect and mechanism of Danggui Buxue Decoction-containing serum in mitigating H9c2 cell injury caused by exposure to intermittent low oxygen.
Ting-Ting LI ; Jie CHEN ; En-Sheng JI ; Ya-Jing GUO
China Journal of Chinese Materia Medica 2023;48(21):5881-5887
This study aims to explore the effect and mechanism of Danggui Buxue Decoction(DBD)-containing serum in alleviating the H9c2 cell injury caused by the exposure to intermittent low oxygen. H9c2 cells were assigned into five groups: control(CON) group, intermittent low oxygen(IH) group, intermittent low oxygen plus DBD-containing serum(IH+DBD) group, intermittent low oxygen plus the autophagy enhancer rapamycin(IH+RAPA) group, and intermittent low oxygen plus DBD-containing serum and the autophagy inhibitor 3-methyladenine(IH+DBD+3-MA) group. Monodansylcadaverine(MDC) staining was employed to detect the changes of autophagosomes. Cell counting kit-8(CCK-8) assay was employed to determine the activity of myocardial cells, and lactate dehydrogenase(LDH) and creatine kinase(CK) kits were used to measure the LDH and CK levels in the cell culture, which would reflect the degree of cell damage. TdT-mediated dUTP nick-end labeling(TUNEL) staining was used to detect the apoptosis of myocardial cells, and JC-1 fluorescence probe to detect the changes in mitochondrial membrane potential. Western blot was employed to determine the expression levels of the autophagy-related proteins microtubule-associated proteins light chain 3Ⅱ(LC3Ⅱ), microtubule-associated proteins light chain 3Ⅰ(LC3Ⅰ), P62, Parkin and apoptosis related proteins pro caspase-3, caspase-3, B-cell lymphoma-2(Bcl-2), Bcl-2-associated X(Bax). The results showed that compared with the CON group, the IH group showed decreased fluorescence intensity of MDC staining, decreased LC3Ⅱ/LC3Ⅰ ratio, down-regulated Parkin expression, and up-regulated expression of P62. In addition, the IH group showed decreased cell survival rate, increased content of LDH and CK in the culture medium, increased number of TUNEL positive cells, and decreased pro caspase-3/caspase-3 and Bcl-2/Bax ratios and mitochondrial membrane potential. Compared with the IH group, the IH+DBD and IH+RAPA groups showed increased fluorescence intensity of MDC staining, increased LC3Ⅱ/LC3Ⅰ ratio, up-regulated Parkin expression, and down-regulated P62 expression. In addition, the two groups showed increased cell survival rate, reduced content of LDH and CK in the culture medium, decreased number of TUNEL positive cells, and increased pro caspase-3/caspase-3 and Bcl-2/Bax ratios and mitochondrial membrane potential. The IH+DBD+3-MA and IH groups showed no significant differences in the above indicators. Compared with the IH+DBD group, the IH+DBD+3-MA group showed decreased fluorescence intensity of MDC staining, decreased LC3Ⅱ/LC3Ⅰ ratio, down-regulated Parkin expression, and up-regulated P62 expression. In addition, the group had decreased cell survival rate, increased content of LDH and CK in the culture medium, increased number of TUNEL positive cells, decreased pro caspase-3/caspase-3 and Bcl-2/Bax ratios, and declined mitochon-drial membrane potential. To sum up, DBD could promote the mitophagy, inhibit the apoptosis, and alleviated the injury of H9c2 cells exposed to low oxygen.
Oxygen
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/genetics*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Autophagy
;
Ubiquitin-Protein Ligases
;
Microtubule-Associated Proteins
9.Mechanism of protective effect of resveratrol on poor ovarian response in mice.
Jian-Heng HAO ; Yue-Meng ZHAO ; Hai-Jun WANG ; Yu-Xia CAO ; Ying LAN ; Lai-Xi JI
China Journal of Chinese Materia Medica 2023;48(21):5888-5897
This study aims to investigate the therapeutic effects and potential mechanisms of resveratrol(Res) on poor ovarian response(POR) in mice. The common target genes shared by Res and POR were predicted by network pharmacology, used for Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment, and then validated by animal experiments. The mice with regular estrous cycle after screening were randomized into normal, POR, and low-and high-dose(20 and 40 mg·kg~(-1), respectively) Res groups. The normal group was administrated with an equal volume of 0.9% sodium chloride solution by gavage, and the mice in other groups with tripterygium glycosides suspension(50 mg·kg~(-1)) by gavage for 2 weeks. After the modeling, the mice in low-and high-dose Res groups were treated with Res by gavage for 2 weeks, and the mice in normal and POR groups with an equal volume of 0.9% sodium chloride solution by gavage. Ovulation induction and sample collection were carried out on the day following the end of treatment. Vaginal smears were collected for observation of the changes in the estrous cycle, the counting of retrieved oocytes, and the measurement of ovarian wet weight and ovarian index. The enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of anti-mullerian hormone(AMH), follicle-stimulating hormone(FSH), estradiol(E_2), and luteinizing hormone(LH) in the serum. The ovarian tissue morphology and granulosa cell apoptosis were observed by hematoxylin-eosin(HE) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL), respectively. Western blot was employed to determine the protein levels of phosphatidylinositol 3-kinase(PI3K), protein kinase B(AKT), forkhead box O(FOXO) 3a, hypoxia-inducible factor(HIF)-1α, B-cell lymphoma-2(Bcl-2), and Bcl-2-associated X protein(Bax). A total of 222 common targets shared by Res and POR were collected. GO annotation indicated that these targets were mainly involved in oxidative stress response. KEGG enrichment analysis revealed that Res can intervene in POR via PI3K/AKT, HIF-1, and FOXO signaling pathways. Animal experiments showed that the model group had higher rate of estrous cycle disorders, lower number and poorer morphology of normally developed follicles at all levels, more atretic follicles, higher apoptosis of ovarian granulosa cells, lower number of retrieved oocytes, lower ovarian wet weight and ovarian index, higher serum levels of FSH and LH, lower levels of AMH and E_2, higher expression levels of HIF-1α, FOXO3a and Bax, and lower expression levels of PI3K, AKT, and Bcl-2 in the ovarian tissue than the normal group. Compared with the POR group, low-and high-dose Res decreased the rate of estrous cycle disorders, improved the follicle number and morphology, reduced atretic follicles, promoted the apoptosis of ovarian granulosa cells, increased retrieved oocytes, ovarian wet weight and ovarian index, and lowered serum FSH and LH levels. Moreover, Res down-regulated the expression levels of HIF-1α, FOXO3a and Bax, and up-regulated the expression levels of PI3K, AKT and Bcl-2 in the ovarian tissue. In summary, Res can inhibit apoptosis and mitigate poor ovarian response in mice by regulating the PI3K/AKT/FOXO3a and HIF-1α pathways.
Female
;
Mice
;
Animals
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Resveratrol/pharmacology*
;
bcl-2-Associated X Protein
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Sodium Chloride
;
Follicle Stimulating Hormone
;
Proto-Oncogene Proteins c-bcl-2
10.Acacetin protects rats from cerebral ischemia-reperfusion injury by regulating TLR4/NLRP3 signaling pathway.
Lan-Ming LIN ; Zheng-Yu SONG ; Jin HU
China Journal of Chinese Materia Medica 2023;48(22):6107-6114
This study aims to investigate the mechanism of acacetin in protecting rats from cerebral ischemia-reperfusion injury via the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. Wistar rats were randomized into sham, model, low-and high-dose acacetin, and nimodipine groups, with 10 rats in each group. The rat model of middle cerebral artery occlusion(MCAO) was established with the improved suture method in other groups except the sham group. The neurological deficit score and cerebral infarction volume of each group were evaluated 24 h after modeling. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interleukin-1β(IL-1β), IL-6, tumor necrosis factor-α(TNF-α), malondialdehyde(MDA), supe-roxide dismutase(SOD), and glutathione(GSH). Western blot was employed to determine the expression levels of B-cell lymphonoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and TLR4/NLRP3 signaling pathway-related proteins(TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β) in the rat brain tissue. Hematoxylin-eosin(HE) staining was employed to reveal the histopathological changes in the ischemic area. Compared with the sham group, the modeling of MCAO increased the neurological deficit score and cerebral infarction volume, elevated the IL-1β, IL-6, TNF-α, and MDA levels and lowered the SOD and GSH levels in the brain tissue(P<0.05). Compared with the MCAO model group, low-and high-dose acacetin and nimodipine decreased the neurological deficit score and cerebral infarction volume, lowered the IL-1β, IL-6, TNF-α, and MDA levels and elevated the SOD and GSH levels in the brain tissue(P<0.05). Compared with the sham group, the model group showed up-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β and down-regulated protein level of Bcl-2 in the brain tissue(P<0.05). Compared with the MCAO model group, the acacetin and nimodipine groups showed down-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β and up-regulated protein level of Bcl-2 in the brain tissue(P<0.05). In conclusion, acacetin regulates the TLR4/NLRP3 signaling pathway to inhibit neuroinflammatory response and oxidative stress, thus exerting the protective effect on cerebral ischemia-reperfusion injury in rats.
Rats
;
Animals
;
NF-kappa B/metabolism*
;
bcl-2-Associated X Protein
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 1/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Nimodipine/pharmacology*
;
Interleukin-6
;
Rats, Wistar
;
Signal Transduction
;
Infarction, Middle Cerebral Artery
;
Reperfusion Injury/prevention & control*
;
Superoxide Dismutase/metabolism*

Result Analysis
Print
Save
E-mail