1.Forkhead Box M1 Regulates the Proliferation,Invasion,and Drug Resistance of Gastric Cancer Cells via circ_NOTCH1.
Ning GE ; Yuan-Yuan JIANG ; Zhong-Ping PAN ; Jie WAN
Acta Academiae Medicinae Sinicae 2023;45(5):713-720
Objective To investigate the impacts of forkhead box M1(FOXM1)on the proliferation,invasion,and drug resistance of gastric cancer cells by regulating the circular RNA circ_NOTCH1.Methods Western blotting and real-time quantitative PCR were performed to determine the expression of FOXM1 protein and circ_NOTCH1,respectively,in the gastric cancer tissue,para-carcinoma tissue,human normal gastric mucosa epithelial cell line GES-1 and gastric cancer cell lines MGC-803,HGC-27,and BGC-823.BGC-823 cells were classified into the following groups:control,short hairpin RNA FOXM1(sh-FOXM1)and negative control(sh-NC),small interfering RNA circ_NOTCH1(si-circ_NOTCH1)and negative control(si-NC),and sh-FOXM1+circ_NOTCH1 overexpression plasmid(sh-FOXM1+pcDNA-circ_NOTCH1)and sh-FOXM1+negative control(sh-FOXM1+pcDNA).CCK-8 assay and clone formation assay were employed to measure the cell proliferation,and Transwell assay to measure cell invasion.After treatment with 1.0 mg/L adriamycin for 48 h,the cell resistance in each group was analyzed.Western blotting was employed to determine the expression levels of FOXM1,proliferating cell nuclear antigen(PCNA),Bax,multi-drug resistance-associated protein 1(MRP1),and multi-drug resistance gene 1(MDR1).RNA pull-down and RNA immunoprecipitation were employed to examine the binding of circ_NOTCH1 to FOXM1 protein.Results Compared with those in the para-carcinoma tissue,the expression levels of FOXM1 protein and circ_NOTCH1 in the gastric cancer tissue were up-regulated(all P<0.001).Compared with GES-1 cells,MGC-803,HGC-27,and BGC-823 cells showed up-regulated expression levels of FOXM1 protein and circ_NOTCH1(all P<0.001).Compared with the control group and sh-NC group,the sh-FOXM1 group with down-regulated expression of FOXM1 protein and circ_NOTCH1 showed decreased optical density value,clone formation rate,cell invasion number,and cell viability,down-regulated expression of PCNA,MRP1,and MDR1,and up-regulated expression of Bax protein in BGC-823 cells(all P<0.001).Compared with the control group and the si-NC group,the si-circ_NOTCH1 group with down-regulated expression of circ_NOTCH1 showed decreased optical density value,clone formation rate,cell invasion number,and cell viability,down-regulated expression of PCNA,MRP1,and MDR1,and up-regulated expression of Bax protein in BGC-823 cells(all P<0.001).Compared with sh-FOXM1 group and sh-FOXM1+pcDNA group,the sh-FOXM1+pcDNA-circ_NOTCH1 group with up-regulated expression of circ_NOTCH1 showed increased optical density value,clone formation rate,cell invasion number,and cell viability,up-regulated expression of PCNA,MRP1,and MDR1,and down-regulated expression of Bax protein(all P<0.001).FOXM1 protein was able to interact with circ_NOTCH1.Conclusion Interference with FOXM1 may inhibit the proliferation,invasion,and drug resistance of gastric cancer cells by silencing circ_NOTCH1 expression.
Humans
;
bcl-2-Associated X Protein/metabolism*
;
Carcinoma
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Drug Resistance
;
Forkhead Box Protein M1/metabolism*
;
Gene Expression Regulation, Neoplastic
;
MicroRNAs/genetics*
;
Proliferating Cell Nuclear Antigen/metabolism*
;
Receptor, Notch1/metabolism*
;
RNA, Small Interfering/genetics*
;
Stomach Neoplasms/genetics*
2.Saikosaponin D regulates apoptosis and autophagy of pancreatic cancer Panc-1 cells via Akt/mTOR pathway.
Yue-Hong GUAN ; Gui-Mei LIU ; Yu-Si LIU ; Lin-Bo LAN ; Rui ZHENG ; Xiao-Bin LIU
China Journal of Chinese Materia Medica 2023;48(19):5278-5284
This study aims to investigate the effect and mechanism of saikosaponin D on the proliferation, apoptosis, and autophagy of pancreatic cancer Panc-1 cells. The cell counting kit(CCK-8) was used to examine the effects of 7, 10, 13, 16, 19, 22, 25, and 28 μmol·L~(-1) saikosaponin D on the proliferation of Panc-1 cells. Three groups including the control(0 μmol·L~(-1)), low-concentration(10 μmol·L~(-1)) saikosaponin D, and high-concentration(16 μmol·L~(-1)) saikosaponin D groups were designed. The colony formation assay was employed to measure the effect of saikosaponin D on the colony formation rate of Panc-1 cells. The cells treated with saikosaponin D were stained with hematoxylin-eosin(HE), and the changes of cell morphology were observed. Hoechst 33258 fluorescent staining was used to detect the effect of saikosaponin D on the cell apoptosis. The autophagy staining assay kit with MDC was used to examine the effect of saikosaponin D on the autophagy of Panc-1 cells. Western blot and immunocytochemistry(ICC) were employed to examine the effect of saikosaponin D on the expression levels and distribution of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cysteine-aspartic acid protease-3(caspase-3), cleaved caspase-3, autophagy-associated protein Beclin1, microtubule-associated protein light chain 3(LC3), protein kinase B(Akt), phosphorylated protein kinase B(p-Akt), mammalian target of rapamycin(mTOR), and phosphorylated mammalian target of rapamycin(p-mTOR). The results showed that compared with the control group, saikosaponin D decreased the proliferation rate of Panc-1 cells in a dose-dependent and time-dependent manner. The colony formation rate of the cells significantly decreased after saikosaponin D treatment. Compared with the control group, the cells treated with saikosaponin D became small, accompanied by the formation of apoptotic bodies. The saikosaponin D groups showed increased apoptosis rate and autophagic vesicle accumulation. Compared with the control group, saikosaponin D up-regulated the expression of Bax, cleaved caspase3, Beclin1, LC3Ⅱ/LC3Ⅰ and down-regulated the expression of Bcl-2, caspase-3, p-Akt/Akt, and p-mTOR/mTOR. In addition, these proteins mainly existed in the cytoplasm. In conclusion, saikosaponin D can inhibit the proliferation and induce the apoptosis and autophagy of Panc-1 cells via inhibiting the Akt/mTOR pathway.
Humans
;
Proto-Oncogene Proteins c-akt/genetics*
;
Caspase 3
;
bcl-2-Associated X Protein
;
Beclin-1/pharmacology*
;
Cell Line, Tumor
;
TOR Serine-Threonine Kinases/genetics*
;
Apoptosis
;
Pancreatic Neoplasms/drug therapy*
;
Caspases
;
Autophagy
3.Blaps rynchopetera combined with cyclophosphamide affects proliferation and apoptosis of lung cancer cells via Wnt/β-catenin signaling pathway.
Jing-Nan YAN ; Ke MA ; Wen-Jie LIU ; Ying LIN ; Xiu-Yu LI ; Dan WU
China Journal of Chinese Materia Medica 2023;48(20):5603-5611
This study aims to investigate the effects of Blaps rynchopetera Fairmaire and/or cyclophosphamide on the proliferation and apoptosis of lung cancer cells and decipher the underlying mechanism. B. rynchopetera and cyclophosphamide-containing serum and blank serum were prepared from SD rats. Cell counting kit-8(CCK-8) assay was employed to examine the proliferation of lung cancer cell lines A549 and Lewis treated with corresponding agents. The Jin's formula method was used to evaluate the combined effect of the two drugs. According to the evaluation results, appropriate drug concentrations and lung cancer cell line were selected for subsequent experiments, which included control, B. rynchopetera, cyclophosphamide, B. rynchopetera + cyclophosphamide, and B. rynchopetera + Wnt/β-catenin pathway agonist lithium chloride(LiCl) groups. Immunocytochemistry was employed to measure the expression of proliferation-related proteins in Lewis cells after drug interventions. Flow cytometry was employed to determine the cell cycle and apoptosis. The expression levels of proliferating cell nuclear antigen(PCNA), cyclinD1, B-cell lymphoma 2(Bcl-2), Bcl-2-assiocated X protein(Bax), Wnt1, and β-catenin were determined by Western blot. The results showed that B. rynchopetera and/or cyclophosphamide significantly inhibited the proliferation of A549 and Lewis cells. Compared with B. rynchopetera alone, the combination increased the inhibition rate on cell proliferation. The combination of B. rynchopetera and cyclophosphamide demonstrated a synergistic effect according to Jin's formula-based evaluation. Compared with the control group, the B. rynchopetera, cyclophosphamide, and B. rynchopetera + cyclophosphamide groups showed increased proportion of Lewis cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. Compared with the cyclophosphamide group, the combination group showed increased proportion of cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. Compared with the B. rynchopetera group, the B. rynchopetera + LiCl group had deceased proportion of cells in G_0/G_1 phase, decreased apoptosis rate, down-regulated expression of Bax, and up-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. The results indicated that B. rynchopetera could inhibit the proliferation, arrest the cell cycle, and induce the apoptosis of lung cancer cells by inhibiting the Wnt/β-catenin signaling pathway. Moreover, B. rynchopetera had a synergistic effect with cyclophosphamide.
Rats
;
Animals
;
Wnt Signaling Pathway
;
Lung Neoplasms/genetics*
;
beta Catenin/metabolism*
;
Proliferating Cell Nuclear Antigen
;
bcl-2-Associated X Protein/metabolism*
;
Rats, Inbred Lew
;
Rats, Sprague-Dawley
;
Apoptosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Proliferation
;
Cyclophosphamide
;
Cell Line, Tumor
4.Effect and mechanism of Danggui Buxue Decoction-containing serum in mitigating H9c2 cell injury caused by exposure to intermittent low oxygen.
Ting-Ting LI ; Jie CHEN ; En-Sheng JI ; Ya-Jing GUO
China Journal of Chinese Materia Medica 2023;48(21):5881-5887
This study aims to explore the effect and mechanism of Danggui Buxue Decoction(DBD)-containing serum in alleviating the H9c2 cell injury caused by the exposure to intermittent low oxygen. H9c2 cells were assigned into five groups: control(CON) group, intermittent low oxygen(IH) group, intermittent low oxygen plus DBD-containing serum(IH+DBD) group, intermittent low oxygen plus the autophagy enhancer rapamycin(IH+RAPA) group, and intermittent low oxygen plus DBD-containing serum and the autophagy inhibitor 3-methyladenine(IH+DBD+3-MA) group. Monodansylcadaverine(MDC) staining was employed to detect the changes of autophagosomes. Cell counting kit-8(CCK-8) assay was employed to determine the activity of myocardial cells, and lactate dehydrogenase(LDH) and creatine kinase(CK) kits were used to measure the LDH and CK levels in the cell culture, which would reflect the degree of cell damage. TdT-mediated dUTP nick-end labeling(TUNEL) staining was used to detect the apoptosis of myocardial cells, and JC-1 fluorescence probe to detect the changes in mitochondrial membrane potential. Western blot was employed to determine the expression levels of the autophagy-related proteins microtubule-associated proteins light chain 3Ⅱ(LC3Ⅱ), microtubule-associated proteins light chain 3Ⅰ(LC3Ⅰ), P62, Parkin and apoptosis related proteins pro caspase-3, caspase-3, B-cell lymphoma-2(Bcl-2), Bcl-2-associated X(Bax). The results showed that compared with the CON group, the IH group showed decreased fluorescence intensity of MDC staining, decreased LC3Ⅱ/LC3Ⅰ ratio, down-regulated Parkin expression, and up-regulated expression of P62. In addition, the IH group showed decreased cell survival rate, increased content of LDH and CK in the culture medium, increased number of TUNEL positive cells, and decreased pro caspase-3/caspase-3 and Bcl-2/Bax ratios and mitochondrial membrane potential. Compared with the IH group, the IH+DBD and IH+RAPA groups showed increased fluorescence intensity of MDC staining, increased LC3Ⅱ/LC3Ⅰ ratio, up-regulated Parkin expression, and down-regulated P62 expression. In addition, the two groups showed increased cell survival rate, reduced content of LDH and CK in the culture medium, decreased number of TUNEL positive cells, and increased pro caspase-3/caspase-3 and Bcl-2/Bax ratios and mitochondrial membrane potential. The IH+DBD+3-MA and IH groups showed no significant differences in the above indicators. Compared with the IH+DBD group, the IH+DBD+3-MA group showed decreased fluorescence intensity of MDC staining, decreased LC3Ⅱ/LC3Ⅰ ratio, down-regulated Parkin expression, and up-regulated P62 expression. In addition, the group had decreased cell survival rate, increased content of LDH and CK in the culture medium, increased number of TUNEL positive cells, decreased pro caspase-3/caspase-3 and Bcl-2/Bax ratios, and declined mitochon-drial membrane potential. To sum up, DBD could promote the mitophagy, inhibit the apoptosis, and alleviated the injury of H9c2 cells exposed to low oxygen.
Oxygen
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/genetics*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Autophagy
;
Ubiquitin-Protein Ligases
;
Microtubule-Associated Proteins
5.Knock-down of ROCK2 gene improves cognitive function and reduces neuronal apoptosis in AD mice by promoting mitochondrial fusion and inhibiting its division.
Minfang GUO ; Huiyu ZHANG ; Peijun ZHANG ; Jingwen YU ; Tao MENG ; Suyao LI ; Lijuan SONG ; Zhi CHAI ; Jiezhong YU ; Cungen MA
Chinese Journal of Cellular and Molecular Immunology 2023;39(8):701-707
Objective To explore the effect of knocking down Rho-associated coiled-coil kinase (ROCK2) gene on the cognitive function of amyloid precursor protein/presenilin-1 (APP/PS1) double transgenic mice and its mechanism. Methods APP/PS1 double transgenic mice were randomly divided into AD model group (AD group), ROCK2 gene knock-down group (shROCK2 group), ROCK2 gene knock-down control group (shNCgroup), and wild-type C57BL/6 mice of the same age served as the wild-type control (WT group). Morris water maze and Y maze were employed to test the cognitive function of mice. Neuron morphology was detected by Nissl staining. Immunofluorescence histochemical staining was used to detect the expression of phosphorylated dynamin-related protein 1 (p-Drp1) and mitochondrial fusion 1 (Mfn1). Western blot analysis was used to detect the expression ROCK2, cleaved-caspase-3 (c-caspase-3), B-cell lymphoma 2 (Bcl2), Bcl2-related protein X (BAX), p-Drp1, mitochondrial fission 1 (Fis1), optic atrophy 1 (OPA1), Mfn1 and Mfn2. Results Compared with AD group mice, the expression of ROCK2 in shROCK2 group mice was significantly reduced; the cognitive function was significantly improved with the number of neurons in the hippocampal CA3 and DG areas increasing, and nissl bodies were deeply stained; the expression of c-caspase-3 and BAX was decreased, while the expression of Bcl2 was increased; the expression of mitochondrial division related proteins p-Drp1 and Fis1 were decreased, while the expression of mitochondrial fusion-related proteins OPA1, Mfn1 and Mfn2 were increased. Conclusion Knock-down of ROCK2 gene can significantly improve the cognitive function and inhibit the apoptosis of nerve cells of APP/PS1 mice. The mechanism may be related to promoting mitochondrial fusion and inhibiting its division.
Animals
;
Mice
;
Alzheimer Disease/pathology*
;
Amyloid beta-Peptides/metabolism*
;
Amyloid beta-Protein Precursor
;
Apoptosis/genetics*
;
bcl-2-Associated X Protein
;
Caspase 3
;
Cognition
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Mitochondrial Dynamics/genetics*
6.miR-181b-5p promotes cell proliferation and induces apoptosis in human acute myeloid leukemia by targeting PAX9.
Bin LI ; Qianshan TAO ; Xueying HU ; Tan LI ; Yangyi BAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1074-1082
Objective To investigate the effects of miR-181b-5p on cells proliferation and apoptosis in acute myeloid leukemia (AML) by targeting paired box 9 (PAX9). Methods The relationship between expression level of PAX9 and prognosis in AML patients was analyzed by gene expression profiling interactive analysis (GEPIA) database and The Cancer Genome Atlas (TCGA) database. Kasumi-1 and AML5 cells were transfected with empty vector (Vector group) or PAX9 (PAX9 group). The proliferation activity was detected by CCK-8 assay, and cells cycle and apoptosis were detected by flow cytometry. Expressions of cyclin-dependent kinase 2 (CDK2), cyclin B1 (CCNB1), B-cell lymphoma 2 (Bcl2) and Bcl2-associated X protein (BAX) were detected by Western blot analysis. The targeted microRNA (miRNA) by PAX9 was predicted by bioinformatics analysis, and the targeted effect was verified by luciferase reporter assay. The level of PAX9 mRNA was detected by real-time quantitative PCR, and expression of PAX9 protein was detected by Western blot analysis. Kasumi-1 and AML5 cells were transfected with miR-NC (miR-NC group) or miR-181b-5p (miR-181b-5p group). The cells were further transfected with PAX9 (miR-181b-5p combined with PAX9 group) in miR-181b-5p group. The proliferation, cycle and apoptosis of cells were detected by the above methods.Results GEPIA and TCGA databases showed that the expression of PAX9 was down-regulated in AML patients, which was correlated with poor prognosis. In Kasumi-1 and AML5 cells, compared with Vector group, proliferation activity of cells, percentage of cells in S phase, and expressions of CDK2, CCNB1 and Bcl2 proteins were decreased, while percentage of cells in G0/G1 phase, apoptosis rate and the expression of BAX protein were increased in PAX9 group. It was confirmed by double luciferase reporter assay that PAX9 was the target gene of miR-181b-5p. Compared with miR-NC group, proliferation activity of cells, percentage of cells in S phase, and expressions of CDK2, CCNB1 and Bcl2 proteins were increased, while percentage of cells in G0/G1 phase, apoptosis rate and the expression of BAX protein were decreased in miR-181b-5p group. Compared with miR-181b-5p group, proliferation activity of cells, percentage of cells in S phase, and expressions of CDK2, CCNB1 and Bcl2 proteins were decreased, while percentage of cells in G0/G1 phase, apoptosis rate and the expression of BAX protein were increased in miR-181b-5p combined with PAX9 group. Conclusion The miR-181b-5p can promote the proliferation of AML cells and delay apoptosis by inhibiting PAX9.
Humans
;
Apoptosis/genetics*
;
bcl-2-Associated X Protein
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Leukemia, Myeloid, Acute/pathology*
;
Luciferases
;
MicroRNAs/metabolism*
;
PAX9 Transcription Factor/genetics*
7.Effect of Long Non-Coding RNA LINC01268 on the Malignant Biological Behaviors of Acute Myeloid Leukemia Cells.
Journal of Experimental Hematology 2023;31(6):1608-1616
OBJECTIVE:
To investigate the effect of long non-coding RNA LINC01268 on apoptosis of acute myeloid leukemia (AML) cells and related mechanisms.
METHODS:
The expression levels of LINC01268 and miR-217 in peripheral blood samples from AML patients and AML cell lines HL-60 and KG-1 were detected by qRT-PCR. HL-60 cells were divided into pcDNA3.1-NC, pcDNA3.1-LINC01268, si-NC, si-LINC01268, miR-NC, miR-217 mimics, si-LINC01268 + inhibitor-NC and si-LINC01268+ miR-217 inhibitor groups. The mRNA expressions of LINC01268 and miR-217 were detected by qRT-PCR. The targeting relationship between LINC01268 and miR-217 was detected by dual-luciferase reporter assay. Cell viability was detected by CCK-8 assay. Cell cycle distribution and apoptosis were detected by flow cytometry. The expression of cell cycle and apoptosis-related proteins p21, Bcl-2, Bax, caspase-3 and PI3K/AKT signaling pathway-related proteins were detected by Western blot.
RESULTS:
The expression of LINC01268 in peripheral blood samples of AML patients and AML cell lines HL-60 and KG-1 was increased (P < 0.05), and the expression of miR-217 was decreased (P < 0.05). Compared with si-NC group and miR-NC group, the viability of HL-60 cells was decreased in si-LINC01268 group and miR-217 mimics group (P < 0.05), the proportion of cells in G1 phase and apoptosis rate were increased (P < 0.05), the protein expression levels of p21, Bax and caspase-3 were increased (P < 0.05), while the protein expression level of Bcl-2 was decreased (P < 0.05). LINC01268 targeted and negatively regulated the expression of miR-217, and inhibiting the expression of miR-217 partially reversed the effects of LINC01268 interference on the viability, cell cycle and apoptosis of HL-60 cells. Interference with LINC01268 could inhibit the activity of PI3K/AKT signaling pathway. Inhibiting the expression of miR-217 could partially reverse the inhibition of LINC01268 interference on PI3K/AKT signaling pathway.
CONCLUSION
LINC01268 is highly expressed and miR-217 is lowly expressed in AML cells. LINC01268 can promote the activity of PI3K/AKT signaling pathway, increase the survival rate and inhibit the apoptosis of AML cells by targeting miR-217 expression.
Humans
;
Apoptosis
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3
;
Cell Line, Tumor
;
Cell Proliferation
;
Leukemia, Myeloid, Acute/metabolism*
;
MicroRNAs/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Long Noncoding/genetics*
8.Overexpression of miR-431-5p impairs mitochondrial function and induces apoptosis in gastric cancer cells via the Bax/Bcl-2/caspase3 pathway.
Jiaming WU ; Zhongquan DENG ; Yi ZHU ; Guangjian DOU ; Jin LI ; Liyong HUANG
Journal of Southern Medical University 2023;43(4):537-543
OBJECTIVE:
To investigate the expression of microRNA miR-431-5p in gastric cancer (GC) tissues and its effects on apoptosis and mitochondrial function in GC cells.
METHODS:
The expression level of miR-431-5p in 50 clinical samples of GC tissues and paired adjacent tissues was detected using real-time fluorescence quantitative PCR, and its correlation with the clinicopathological features of the patients was analyzed. A cultured human GC cell line (MKN-45 cells) were transfected with a miR-431-5p mimic or a negative control sequence, and the cell proliferation, apoptosis, mitochondrial number, mitochondrial potential, mitochondrial permeability transition pore (mPTP), reactive oxygen species (ROS) production and adenosine triphosphate (ATP) content were detected using CCK-8 assay, flow cytometry, fluorescent probe label, or ATP detection kit. The changes in the expression levels of the apoptotic proteins in the cells were detected with Western blotting.
RESULTS:
The expression level of miR-431-5p was significantly lower in GC tissues than in the adjacent tissues (P < 0.001) and was significantly correlated with tumor differentiation (P=0.0227), T stage (P=0.0184), N stage (P=0.0005), TNM stage (P=0.0414) and vascular invasion (P=0.0107). In MKN-45 cells, overexpression of miR-431-5p obviously inhibited cell proliferation and induced cell apoptosis, causing also mitochondrial function impairment as shown by reduced mitochondrial number, lowered mitochondrial potential, increased mPTP opening, increased ROS production and reduced ATP content. Overexpression of miR-431-5p significantly downregulated the expression of Bcl-2 and increased the expressions of pro-apoptotic proteins p53, Bcl-2 and cleaved caspase-3 protein.
CONCLUSION
The expression of miR-431-5p is down-regulated in GC, which results in mitochondrial function impairment and promotes cell apoptosis by activating the Bax/Bcl-2/caspase3 signaling pathway, suggesting the potential role of miR-431-5p in targeted therapy for GC.
Humans
;
Apoptosis/genetics*
;
bcl-2-Associated X Protein
;
Caspase 3
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
MicroRNAs/metabolism*
;
Mitochondria/metabolism*
;
Mitochondrial Permeability Transition Pore
;
Reactive Oxygen Species
;
Stomach Neoplasms/pathology*
9.LncRNA DRAIC regulates the proliferation, apoptosis, migration and invasion of lung adenocarcinoma cells by targeting let-7i-5p.
Bao Lin LIU ; Yi Shuang CUI ; Ya Ping TIAN ; Ying Ze ZHU ; Zi Qian HONG ; Xue Mei ZHANG ; Guo Gui SUN
Chinese Journal of Oncology 2023;45(6):471-481
Objective: To investigate the effects of lncRNA DRAIC on proliferation, apoptosis, migration and invasion of lung adenocarcinoma cells and its mechanism. Methods: Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expression of DRAIC in lung cancer tissues and corresponding adjacent normal tissues of 40 patients with lung adenocarcinoma who underwent surgery in Tangshan People's Hospital from 2019 to 2020. Lung adenocarcinoma cells A549 and H1299 were cultured in vitro and divided into si-NC group, si-DRAIC group, miR-NC group, let-7i-5p mimics group, si-DRAIC+ inhibitor-NC group, and si-DRAIC+ let-7i-5p inhibitor group. CCK-8 method and clone formation experiment were used to detect cell proliferation. Flow cytometry was used to detect cell apoptosis. Transwell array was used to detect the cell migration and invasion. Western blot was used to detect the protein expressions of Caspase-3, Caspase-9, Bcl-2 and Bax. The double luciferase reporter gene experiment was used to verify the regulatory relationship between DRAIC and let-7i-5p. Independent sample t test was used for comparison between two groups, one-way ANOVA was used for comparison between multiple groups, and Pearson correlation analysis was used for correlation analysis. Results: Compared with adjacent tissues, the expression level of DRAIC in lung adenocarcinoma tissues increased (P<0.05), but the expression level of let-7i-5p decreased (P<0.05). The expression levels of DRAIC and let-7i-5p in lung adenocarcinoma tissues were negatively correlated (r=-0.737, P<0.05). The absorbance value of A549 and H1299 cells in the si-DRAIC group at 48, 72 and 96 hours were lower than those in the si-NC group (P<0.05), the number of clones formed [(91.00±6.08 vs. 136.67±6.51); (50.67±1.53 vs. 76.67±4.51)], the number of migration [(606.67±31.34 vs. 960.00±33.06); (483.33±45.96 vs. 741.67±29.67)], the number of invasion [(185.00±8.19 vs. 447.33±22.05); (365.00±33.87 vs. 688.00±32.97)] were lower than those in the si-NC group (P<0.05). However, the apoptosis rates of cells [(13.43±2.79)% vs. (4.53±0.42)%; (23.77±1.04)% vs. (6.60±1.42)%] were higher than those in the si-NC group (P<0.05). The protein expressions of Caspase-3, Caspase-9 and Bax in si-DRAIC group were higher than those in si-NC group, and the protein expression of Bcl-2 was lower than that in si-NC group (P<0.05). DRAIC is located in the cytoplasm. DRAIC targeted and negatively regulated the expression of let-7i-5p. The absorbance values of A549 and H1299 cells in the let-7i-5p mimics group at 48, 72 and 96 hours were lower than those in the miR-NC group (P<0.05), the number of clones formed [(131.33±14.47 vs. 171.33±6.11); (59.33±4.93 vs. 80.33±7.09)], the number of migration [(137.67±3.06 vs. 579.33±82.03); (425.00±11.14 vs. 669.33±21.13)], the number of invasion [(54.00±4.36 vs. 112.67±11.59); (80.00±4.58 vs. 333.33±16.80)] were lower than those in the miR-NC group (P<0.05). However, the apoptosis rates of cells [(14.57±1.10)% vs. (6.97±1.11)%; (23.97±0.42)% vs. (7.07±1.21)%] were higher than those in the miR-NC group (P<0.05). The protein expressions of Caspase-3, Caspase-9 and Bax in let-7i-5p mimics group were higher than those in miR-NC group, and the protein expression of Bcl-2 was lower than that in miR-NC group (P<0.05). The absorbance values of A549 and H1299 cells in the si-DRAIC+ let-7i-5p inhibitor group at 48, 72 and 96 hours were higher than those in the si-DRAIC+ inhibitor-NC group (P<0.05), the number of clones formed [(82.00±5.29 vs. 59.00±5.57); (77.67±4.93 vs. 41.33±7.57)], the number of migration [(774.33±35.81 vs. 455.67±19.04); (569.67±18.72 vs. 433.67±16.77)], the number of invasion [(670.33±17.21 vs. 451.00±17.52); (263.67±3.06 vs. 182.33±11.93)] were higher than those in the si-DRAIC+ inhibitor-NC group (P<0.05). However, the apoptosis rates of cells [(7.73±0.45)% vs. (19.13±1.50)%; (8.00±0.53)% vs. (28.40±0.53)%] were lower than those in the si-NC group (P<0.05). The protein expressions of Caspase-3, Caspase-9 and Bax in si-DRAIC+ let-7i-5p inhibitor group were higher than those in si-DRAIC+ inhibitor-NC group, and the protein expression of Bcl-2 was lower than that in si-DRAIC+ inhibitor-NC group (P<0.05). Conclusion: DRAIC is highly expressed in lung adenocarcinoma, and DRAIC promotes the proliferation, migration and invasion of lung adenocarcinoma cells and inhibits apoptosis by targeting let-7i-5p.
Humans
;
Adenocarcinoma/genetics*
;
Apoptosis/genetics*
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/metabolism*
;
Caspase 9/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Lung/metabolism*
;
MicroRNAs/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Long Noncoding/genetics*
10.Decursin affects proliferation, apoptosis, and migration of colorectal cancer cells through PI3K/Akt signaling pathway.
Yi YANG ; Yan-E HU ; Mao-Yuan ZHAO ; Yi-Fang JIANG ; Xi FU ; Feng-Ming YOU
China Journal of Chinese Materia Medica 2023;48(9):2334-2342
We investigated the effects of decursin on the proliferation, apoptosis, and migration of colorectal cancer HT29 and HCT116 cells through the phosphatidylinositol 3-kinase(PI3K)/serine-threonine kinase(Akt) pathway. Decursin(10, 30, 60, and 90 μmol·L~(-1)) was used to treat HT29 and HCT116 cells. The survival, colony formation ability, proliferation, apoptosis, wound hea-ling area, and migration of the HT29 and HCT116 cells exposed to decursin were examined by cell counting kit-8(CCK8), cloning formation experiments, Ki67 immunofluorescence staining, flow cytometry, wound healing assay, and Transwell assay, respectively. Western blot was employed to determine the expression levels of epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), vimentin, B-cell lymphoma/leukemia-2(Bcl-2), Bcl-2-associated X protein(Bax), tumor suppressor protein p53, PI3K, and Akt. Compared with the control group, decursin significantly inhibited the proliferation and colony number and promoted the apoptosis of HT29 and HCT116 cells, and it significantly down-regulated the expression of Bcl-2 and up-regulated the expression of Bax. Decursin inhibited the wound healing and migration of the cells, significantly down-regulated the expression of N-cadherin and vimentin, and up-regulated the expression of E-cadherin. In addition, it significantly down-regulated the expression of PI3K and Akt and up-regulated that of p53. In summary, decursin may regulate epithelial-mesenchymal transition(EMT) via the PI3K/Akt signaling pathway, thereby affecting the proliferation, apoptosis, and migration of colorectal cancer cells.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
bcl-2-Associated X Protein
;
Vimentin/metabolism*
;
Cell Proliferation
;
Signal Transduction
;
Apoptosis
;
Cell Line, Tumor
;
Colorectal Neoplasms/genetics*
;
Cadherins/genetics*
;
Cell Movement

Result Analysis
Print
Save
E-mail