1.Protective effect of reduced glutathione C60 derivative against hydrogen peroxide-induced apoptosis in HEK 293T cells.
Jin HUANG ; Chi ZHOU ; Jun HE ; Zheng HU ; Wen-Chao GUAN ; Sheng-Hong LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):356-363
Hydrogen peroxide (H2O2) and free radicals cause oxidative stress, which induces cellular injuries, metabolic dysfunction, and even cell death in various clinical abnormalities. Fullerene (C60) is critical for scavenging oxygen free radicals originated from cell metabolism, and reduced glutathione (GSH) is another important endogenous antioxidant. In this study, a novel water-soluble reduced glutathione fullerene derivative (C60-GSH) was successfully synthesized, and its beneficial roles in protecting against H2O2-induced oxidative stress and apoptosis in cultured HEK 293T cells were investigated. Fourier Transform infrared spectroscopy and (1)H nuclear magnetic resonance were used to confirm the chemical structure of C60-GSH. Our results demonstrated that C60-GSH prevented the reactive oxygen species (ROS)-mediated cell damage. Additionally, C60-GSH pretreatment significantly attenuated H2O2-induced superoxide dismutase (SOD) consumption and malondialdehyde (MDA) elevation. Furthermore, C60-GSH inhibited intracellular calcium mobilization, and subsequent cell apoptosis via bcl-2/bax-caspase-3 signaling pathway induced by H2O2 stimulation in HEK 293T cells. Importantly, these protective effects of C60-GSH were superior to those of GSH. In conclusion, these results suggested that C60-GSH has potential to protect against H2O2-induced cell apoptosis by scavenging free radicals and maintaining intracellular calcium homeostasis without evident toxicity.
Antioxidants
;
pharmacology
;
Apoptosis
;
drug effects
;
Calcium
;
metabolism
;
Caspase 3
;
genetics
;
metabolism
;
Cell Survival
;
drug effects
;
Fullerenes
;
chemistry
;
pharmacology
;
Gene Expression Regulation
;
Glutathione
;
analogs & derivatives
;
pharmacology
;
HEK293 Cells
;
Humans
;
Hydrogen Peroxide
;
antagonists & inhibitors
;
pharmacology
;
Ion Transport
;
drug effects
;
Malondialdehyde
;
antagonists & inhibitors
;
metabolism
;
Oxidative Stress
;
drug effects
;
Proto-Oncogene Proteins c-bcl-2
;
genetics
;
metabolism
;
Reactive Oxygen Species
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
Superoxide Dismutase
;
metabolism
;
bcl-2-Associated X Protein
;
genetics
;
metabolism
2.Inhibiting HSP70 expression enhances cisplatin sensitivity of cervical cancer cells.
Jian LIU ; Jing LIU ; Sheng-Ze LI ; Ying-Ao ZHENG ; Su-Yang GUO ; Xiu WANG
Journal of Southern Medical University 2016;37(4):475-481
OBJECTIVETo investigate the relationship between sensitivity to cisplatin (DDP) and the expression of HSP70 in cervical cancer cells in vitro.
METHODSCervical cancer Hela229 cells treated with different concentrations of DDP and the HSP70 inhibitor (PFT-µ) were examined for cell viability using MTT assay and colony forming ability. The cell apoptosis was analyzed by flow cytometry with propidium iodide staining and DAPI staining, and JC-1 staining was used to determine mitochondrial membrane potential. The expressions of HSP70, Bcl-2, Bax and caspase-3 were measured with Western blotting. A nude mouse model bearing Hela229 cell xenograft was used to evaluate the effect of DDP and PFT-µ on tumor growth.
RESULTSHela229 cells expressed a higher level of HSP70 than normal cervical cells. The combined use of PFT-µ significantly enhanced the inhibitory effect of DDP (P<0.01) and increased the cell apoptosis in Hela229 cells. JC-1 staining demonstrated that DDP combined with PFT-µ more obviously reduced mitochondrial membrane potential. DDP combined with PFT-µ more strongly lowered Bcl-2 expression and increased the expressions of casepase-3 and Bax than DDP alone. In the nude mouse model, PFT-µ significantly enhanced DDP sensitivity of Hela229 cell xenografts (P<0.01).
CONCLUSIONSInhibition of HSP70 expression can enhance the sensitivity of cervical cancer cell to DDP both in vivo and in vitro possibly by promoting cell apoptosis, suggesting the potential of HSP70 as a new target for gene therapy of cervical cancer.
Animals ; Antineoplastic Agents ; pharmacology ; Apoptosis ; Caspase 3 ; metabolism ; Cell Proliferation ; Cell Survival ; Cisplatin ; pharmacology ; Drug Resistance, Neoplasm ; Female ; HSP70 Heat-Shock Proteins ; antagonists & inhibitors ; HeLa Cells ; Humans ; Membrane Potential, Mitochondrial ; Mice ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Sulfonamides ; pharmacology ; Uterine Cervical Neoplasms ; drug therapy ; pathology ; Xenograft Model Antitumor Assays ; bcl-2-Associated X Protein ; metabolism
3.Knockdown of Bmi1 inhibits bladder cancer cell growth both in vitro and in vivo by blocking cell cycle at G1 phase and inducing apoptosis.
Hong-bo LUO ; Bin LI ; Wei-gang YUAN ; Chuan-rui XU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):730-735
Bmi1 is a member of the polycomb group family of proteins, and it drives the carcinogenesis of various cancers and governs the self-renewal of multiple types of stem cells. However, its role in the initiation and progression of bladder cancer is not clearly known. The present study aimed to investigate the function of Bmi1 in the development of bladder cancer. Bmi1 expression was detected in human bladder cancer tissues and their adjacent normal tissues (n=10) by immunohistochemistry, qRT-PCR and Western blotting, respectively. Bmi1 small interference RNA (siRNA) was synthesized and transfected into human bladder carcinoma cells (EJ) by lipofectamine 2000. The Bmil expression at mRNA and protein levels was measured in EJ cells transfected with Bmil siRNA (0, 80, 160 nmol/L) by qRT-PCR and Western blotting, respectively. Cell viability and Ki67 expression (a marker of cell proliferation) were determined in Bmi1 siRNA-transfected cells by CCK-8 assay and qRT-PCR, respectively. Cell cycle of transfected cells was flow-cytometrically determined. Immunofluorescence and Western blotting were used to detect the expression levels of cell cycle-associated proteins cyclin D1 and cyclin E in the cells. Pro-apoptotic proteins Bax and caspase 3 and anti-apoptotic protein Bcl-2 were detected by Western blotting as well. Additionally, xenograft tumor models were established by inoculation of EJ cells (infected with Bmil shRNA/pLKO.1 lentivirus or not) into nude mice. The tumor volumes were measured every other day for 14 days. The results showed that the Bmil expression was significantly increased in bladder tumor tissues when compared with that in normal tissues (P<0.05). Perturbation of Bmi1 expression by using siRNA could significantly inhibit the proliferation of EJ cells (P<0.05). Bmi1 siRNA-transfected EJ cells were accumulated in G1 phase and the expression levels of cyclin D1 and cyclin E were down-regulated. Bax and caspase-3 expression levels were significantly increased and Bcl-2 levels decreased after Bmi1 knockdown. Tumor volume was conspicuously reduced in mice injected with EJ cells with Bmi1 knockdown. Our findings indicate that Bmi1 is a potential driver oncogene of bladder cancer and it may become a potential treatment target for human bladder cancer.
Animals
;
Apoptosis
;
genetics
;
Carcinogenesis
;
genetics
;
metabolism
;
pathology
;
Carcinoma
;
genetics
;
metabolism
;
pathology
;
therapy
;
Caspase 3
;
genetics
;
metabolism
;
Cell Line, Tumor
;
Cyclin D1
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Cyclin E
;
antagonists & inhibitors
;
genetics
;
metabolism
;
G1 Phase Cell Cycle Checkpoints
;
genetics
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Injections, Intralesional
;
Ki-67 Antigen
;
genetics
;
metabolism
;
Mice
;
Mice, Nude
;
Polycomb Repressive Complex 1
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Proto-Oncogene Proteins c-bcl-2
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA, Small Interfering
;
administration & dosage
;
genetics
;
metabolism
;
Signal Transduction
;
Tumor Burden
;
Urinary Bladder
;
metabolism
;
pathology
;
Urinary Bladder Neoplasms
;
genetics
;
metabolism
;
pathology
;
therapy
;
Xenograft Model Antitumor Assays
;
bcl-2-Associated X Protein
;
agonists
;
genetics
;
metabolism
4.Kinetin inhibits proliferation of hepatic stellate cells by interrupting cell cycle and induces apoptosis by down-regulating ratio of Bcl-2/Bax.
Zhen-gang ZHANG ; Jie ZOU ; Ying HUANG ; Liang WU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):672-678
Liver fibrosis is an important health problem that can further progress into cirrhosis or liver cancer, and result in significant morbidity and mortality. Inhibiting proliferation and inducing apoptosis of hepatic stellate cells (HSCs) may be the key point to reverse liver fibrosis. At present, anti-fibrosis drugs are rare. Kinetin is a type of plant-derived cytokinin which has been reported to control differentiation and induce apoptosis of human cells. In this study, the HSCs were incubated with different concentrations of kinetin. The proliferation of rat HSCs was measured by MTT assay, cell cycle and apoptosis were analyzed by flow cytometry, and the apoptosis was examined by TUNEL method. The expression of Bcl-2 and Bax proteins was detected by immunocytochemistry staining. It was found that kinetin could markedly inhibit proliferation of HSCs. In a concentration range of 2 to 8 μg/mL, the inhibitory effects of kinetin on proliferation of HSCs were increased with the increased concentration and the extension of time (P < 0.01). Flow cytometry indicated that kinetin could inhibit the DNA synthesis from G0/G1 to S phase in a dose-dependent manner (P < 0.01). The apoptosis rates of the HSCs treated with 8, 4 and 2 μg/mL kinetin (25.62% ± 2.21%, 15.31% ± 1.9% and 6.18% ± 1.23%, respectively) were increased significantly compared with the control group (3.81% ± 0.93%) (P < 0.01). All the DNA frequency histogram in kinetin-treated groups showed obvious hypodiploid peak (sub-G1 peak), and with the increase of kinetin concentrations, the apoptosis rate of HSCs also showed a trend of increase. It was also found that kinetin could down-regulate the expression of Bcl-2, and up-regulate the expression of Bax, leading to the decreased ratio of Bcl-2/Bax significantly. The kinetin-induced apoptosis of HSCs was positively correlated with the expression of Bax, and negatively with the expression of Bcl-2. It was concluded that kinetin can inhibit activation and proliferation of HSCs by interrupting the cell cycle at G1/S restriction point and inducing apoptosis of HSCs via reducing the ratio of Bcl-2/Bax.
Animals
;
Apoptosis
;
drug effects
;
Cell Line, Transformed
;
Cell Proliferation
;
drug effects
;
Dose-Response Relationship, Drug
;
G1 Phase Cell Cycle Checkpoints
;
drug effects
;
genetics
;
Gene Expression Regulation
;
Growth Inhibitors
;
pharmacology
;
Hepatic Stellate Cells
;
cytology
;
drug effects
;
metabolism
;
Kinetin
;
pharmacology
;
Proto-Oncogene Proteins c-bcl-2
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Rats
;
Signal Transduction
;
bcl-2-Associated X Protein
;
agonists
;
genetics
;
metabolism
5.Reversal of stemness in multidrug-resistant hepatocellular carcinoma cells by SIS3.
Wei YAN ; Ting WEN ; Suqiong LIN ; Zhongcai LIU ; Wenchao YANG ; Guoyang WU ; Email: WUGUOYANG_MAIL@ALIYUN.COM.
Chinese Journal of Oncology 2015;37(10):731-735
OBJECTIVETo investigate whether SIS3, a specific inhibitor of Smad3 phosphorylation, can reverse the stemness of multidrug-resistant(MDR) hepatocellular carcinoma cells.
METHODSMDR HCC Huh7.5.1/ADM cell lines were developed by exposing parental cells to stepwise increasing concentrations of ADM. CCK-8 assay was used to determine the cellular sensitivity of various anticancer drugs. Flow cytometry (FCM) was used to analyze the expression level of cancer stem cell marker CD133. Clone formation assay and mouse subcutaneous xenograft tumors were used to investigate the tumorigenicity in vitro and in vivo. Western blotting (WB) was used to analyze the changes of expressions of CD133, Smad3, Bcl-2, Bax and p-Smad3 in different conditions.
RESULTSADM treatment of HCC cells in vitro resulted in a development of subline, Huh7.5.1/ADM cells, with CSC phenotypes: stable MDR phenotype (besides ADMc Huh7.5.1/ADM cells were also more resistant to some other anticancer drugs including VCR, MMC and CTX ) (IC50: 0.215 ± 0.018 vs. 0.123 ± 0.004, 0.145 ± 0.009 vs. 0.014 ± 0.002, 1.021 ± 0.119 vs. 0.071 ± 0.006, 27.007 ± 1.606 vs. 1.919 ± 0.032) (unit: µg/ml) (P<0.05). Huh7.5.1/ADM cells enriched the cancer stem-like cell fraction (CD133-positive subpopulation) (76.06 ± 2.948% vs. 25.38 ± 4.349%) (P<0.05), had stronger tumorigenicity in vivo and colony formation ability, and activated the Smad3 activity. Inhibition of Smad3 activity by SIS3 decreased stemness of the Huh7.5.1/ADM cells: CD133-positive subpopulation (48.49 ± 2.304% vs. 76.06 ± 2.948%) (P<0.05); ADM IC50: (0.112 ± 0.019 vs. 0.215 ± 0.018), VCR IC50 (0.065 ± 0.013 vs. 0.145±0.009), MMC IC₅₀ (0.749 ± 0.121 vs. 1.021 ± 0.119), CTX IC50 (10.576 ± 1.248 vs. 27.007 ± 1.606) (unit: µg/ml) (P<0.05), and decreased tumorigenicity and colony formation ability.
CONCLUSIONSIS3 as a specific inhibitor of Smad3 signal is involved in the stemness of multidrug resistant hepatocellular carcinoma cells.
AC133 Antigen ; Animals ; Antibiotics, Antineoplastic ; pharmacology ; Antigens, CD ; metabolism ; Carcinoma, Hepatocellular ; drug therapy ; metabolism ; pathology ; Doxorubicin ; pharmacology ; Drug Resistance, Neoplasm ; Glycoproteins ; metabolism ; Heterografts ; Humans ; Isoquinolines ; pharmacology ; Liver Neoplasms ; drug therapy ; metabolism ; pathology ; Mice ; Neoplasm Proteins ; metabolism ; Neoplastic Stem Cells ; drug effects ; Peptides ; metabolism ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Pyridines ; pharmacology ; Pyrroles ; pharmacology ; Smad3 Protein ; antagonists & inhibitors ; metabolism ; Tumor Stem Cell Assay ; bcl-2-Associated X Protein ; metabolism
6.Isochamaejasmin induces apoptosis in leukemia cells through inhibiting Bcl-2 family proteins.
Shou-De ZHANG ; Lei SHAN ; Wei LI ; Hong-Lin LI ; Wei-Dong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2015;13(9):660-666
The biflavonoid isochamaejasmin is mainly distributed in the root of Stellera chamaejasme L. (Thymelaeaceae) that is used in traditional Chinese medicine (TCM) to treat tumors, tuberculosis, and psoriasis. Herein, isochamaejasmin was found to show similar bioactivity against Bcl-2 family proteins to the reference Bcl-2 ligand (-)-gossypol through 3D similarity search. It selectively bound to Bcl-xl and Mcl-1 with Ki values being 1.93 ± 0.13 μmol·L(-1) and 9.98 ± 0.21 μmol·L(-1), respectively. In addition, isochamaejasmin showed slight growth inhibitory activity against HL-60 with IC50 value being 50.40 ± 1.21 μmol·L(-1) and moderate growth inhibitory activity against K562 cells with IC50 value being 24.51 ± 1.62 μmol·L(-1). Furthermore, isochamaejasmin induced apoptosis of K562 cells by increasing the intracellular expression levels of proteins of the cleavage of caspase-9, caspase-3, and PARP which involved in the Bcl-2-induced apoptosis pathway. These results indicated that isochamaejasmin induces apoptosis in leukemia cells by inhibiting the activity of Bcl-2 family proteins, providing evidence for further studying the underlying anti-cancer mechanism of S. chamaejasme L.
Antineoplastic Agents, Phytogenic
;
pharmacology
;
therapeutic use
;
Apoptosis
;
drug effects
;
Biflavonoids
;
pharmacology
;
therapeutic use
;
Caspase 3
;
metabolism
;
Caspase 9
;
metabolism
;
Gossypol
;
pharmacology
;
HL-60 Cells
;
Humans
;
Inhibitory Concentration 50
;
K562 Cells
;
Leukemia
;
drug therapy
;
metabolism
;
Myeloid Cell Leukemia Sequence 1 Protein
;
metabolism
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Poly(ADP-ribose) Polymerases
;
metabolism
;
Proto-Oncogene Proteins c-bcl-2
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
Thymelaeaceae
;
chemistry
;
bcl-2-Associated X Protein
;
metabolism
7.Knockdown of Bcl-xL Enhances Growth-Inhibiting and Apoptosis-Inducing Effects of Resveratrol and Clofarabine in Malignant Mesothelioma H-2452 Cells.
Yoon Jin LEE ; In Sung HWANG ; Yong Jin LEE ; Chang Ho LEE ; Sung Ho KIM ; Hae Saeon NAM ; Young Jin CHOI ; Sang Han LEE
Journal of Korean Medical Science 2014;29(11):1464-1472
Mcl-1 and Bcl-xL, key anti-apoptotic proteins of the Bcl-2 family, have attracted attention as important molecules in the cell survival and drug resistance. In this study, we investigated whether inhibition of Bcl-xL influences cell growth and apoptosis against simultaneous treatment of resveratrol and clofarabine in the human malignant mesothelioma H-2452 cells. Resveratrol and clofarabine decreased Mcl-1 protein levels but had little effect on Bcl-xL levels. In the presence of two compounds, any detectable change in the Mcl-1 mRNA levels was not observed in RT-PCR analysis, whereas pretreatment with the proteasome inhibitor MG132 led to its accumulation to levels far above basal levels. The knockdown of Bcl-xL inhibited cell proliferation with cell accumulation at G2/M phase and the appearance of sub-G0/G1 peak in DNA flow cytometric assay. The suppression of cell growth was accompanied by an increase in the caspase-3/7 activity with the resultant cleavages of procaspase-3 and its substrate poly (ADP-ribose) polymerase, and increased percentage of apoptotic propensities in annexin V binding assay. Collectively, our data represent that the efficacy of resveratrol and clofarabine for apoptosis induction was substantially enhanced by Bcl-xL-lowering strategy in which the simultaneous targeting of Mcl-1 and Bcl-xL could be a more effective strategy for treating malignant mesothelioma.
Adenine Nucleotides/*pharmacology
;
Antimetabolites, Antineoplastic/*pharmacology
;
Apoptosis/*drug effects
;
Arabinonucleosides/*pharmacology
;
Caspase 3/metabolism
;
Caspase 7/metabolism
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
G2 Phase Cell Cycle Checkpoints/drug effects
;
Gene Knockdown Techniques
;
Humans
;
Leupeptins/pharmacology
;
Lung Neoplasms/metabolism/pathology
;
M Phase Cell Cycle Checkpoints/drug effects
;
Mesothelioma/metabolism/pathology
;
Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors/genetics/metabolism
;
RNA Interference
;
RNA, Messenger/metabolism
;
RNA, Small Interfering/metabolism
;
Stilbenes/*pharmacology
;
bcl-X Protein/antagonists & inhibitors/*genetics/*metabolism
8.Growth inhibition of combined pathway inhibitors on KRAS mutated non-small cell lung cancer cell line.
Zhan-wen LI ; Zhen-li YANG ; Hai-liang FENG ; Xiao-cui BIAN ; Yan-yan LIU ; Yu-qin LIU
Chinese Journal of Pathology 2013;42(5):330-335
OBJECTIVETo investigate the effect of the selective PI3K inhibitor and MEK inhibitor on KRAS and PTEN co-mutated non-small cell lung cancer cell line NCI-H157 and the relevant mechanisms.
METHODSNCI-H157 was cultured routinely and treated with different concentrations of the two inhibitors. Cell proliferation was detected by MTT cell cycle assay. Based on the MTT results the cells were divided into four groups: the control group, PI3K inhibitor group (GDC-0941, 0.5 and 5.0 µmol/L), combination group I (0.5 µmol/L AZD6244 + 0.5 µmol/L GDC-0941) and combination group II (5.0 µmol/L AZD6244 + 5.0 µmol/L GDC-0941). Colony formation assay was performed to detect colony formation efficiency. The cell cycle and apoptosis were analyzed by flow cytometry. The expression of protein related to apoptosis was tested with Western blot.
RESULTSCell growth was inhibited by the two inhibitors. Combination groups led to stronger cell proliferation inhibition: combination group Ishowed synergistic effect of their actions and combination group II showed an additive effect; in both groups, there were decreased colony number [(77.2 ± 1.54)/well vs (61.50 ± 2.12)/well, P < 0.01] and [(51.00 ± 4.00)/ well vs (22.50 ± 3.53)/well, P < 0.01]; and enhanced apoptotic ratios [(18.30 ± 0.82)% vs (21.32 ± 0.56)%, P < 0.01] and [(27.14 ± 1.58)% vs (42.45 ± 4.42)%, P < 0.01]. In addition, compared to the PI3K inhibitor alone group, the NCI-H157 cells in the combination groups showed increased G0/G1 phase and decreased S phase (P < 0.01). Western blotting showed that the combination groups demonstrated significantly decreased expression of cyclin D1 and cyclin B1, increased p21 and cleaved PARP and decreased bcl-2/bax ratio, compared to the PI3K inhibitor only group.
CONCLUSIONThe combined inhibition of PI3K (AZD6244) and MEK (GDC-0941) has synergistic effects on the proliferation of NCI-H157 cells, but such effects appear to be in a dose-dependent manner.
Apoptosis ; drug effects ; Benzimidazoles ; administration & dosage ; pharmacology ; Carcinoma, Non-Small-Cell Lung ; genetics ; pathology ; Cell Cycle ; drug effects ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Cyclin B1 ; metabolism ; Cyclin D1 ; metabolism ; Dose-Response Relationship, Drug ; Drug Synergism ; Humans ; Indazoles ; administration & dosage ; pharmacology ; Lung Neoplasms ; genetics ; pathology ; Mitogen-Activated Protein Kinase Kinases ; antagonists & inhibitors ; metabolism ; Mutation ; PTEN Phosphohydrolase ; genetics ; Phosphatidylinositol 3-Kinases ; antagonists & inhibitors ; metabolism ; Poly(ADP-ribose) Polymerases ; metabolism ; Proto-Oncogene Proteins ; genetics ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Proto-Oncogene Proteins p21(ras) ; metabolism ; Signal Transduction ; Sulfonamides ; administration & dosage ; pharmacology ; bcl-2-Associated X Protein ; metabolism ; ras Proteins ; genetics
9.Targeting proliferation and survival pathways in head and neck cancer for therapeutic benefit.
Chinese Journal of Cancer 2012;31(7):319-326
Head and neck squamous cell carcinomas (HNSCC) are common human malignancies with poor clinical outcomes. The 5-year survival rates for patients with advanced stage HNSCC have not changed appreciably in the past few decades, underscoring a dire need for improved therapeutic options. Recent studies have elucidated a key signaling axis, the EGFR-STAT3-Bcl-XL signaling axis, that is aberrantly activated in a majority of HNSCC and contributes to the proliferation and survival of malignant cells. Considerable effort is being placed on developing highly specific inhibitors of different components of this pathway. This review highlights the progress that is being made towards achieving potent inhibition of the EGFR-STAT3-Bcl-XL signaling axis in HNSCC and the promising therapeutic strategies that are currently under development for this disease.
Animals
;
Antibodies, Monoclonal
;
pharmacology
;
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
Biphenyl Compounds
;
pharmacology
;
Cell Proliferation
;
Head and Neck Neoplasms
;
metabolism
;
pathology
;
Humans
;
Nitrophenols
;
pharmacology
;
Piperazines
;
pharmacology
;
Receptor, Epidermal Growth Factor
;
antagonists & inhibitors
;
STAT3 Transcription Factor
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
drug effects
;
Sulfonamides
;
pharmacology
;
bcl-X Protein
;
antagonists & inhibitors
;
metabolism
10.EGFR inhibitors sensitize non-small cell lung cancer cells to TRAIL-induced apoptosis.
Fei XU ; Ying TIAN ; Yan HUANG ; Ling-Ling ZHANG ; Zheng-Zheng GUO ; Jia-Jia HUANG ; Tong-Yu LIN
Chinese Journal of Cancer 2011;30(10):701-711
Apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can be regulated by the epidermal growth factor (EGF) signaling pathway. In this study, recombinant adenoviral vectors that encode TRAIL gene from the hTERT/RGD promoter (AdTRAIL) was combined with drugs including gefitinib, elotinib, and cetuximab that inhibit EGFR and the EGF signaling pathway in non-small cell lung cancer (NSCLC) cell lines to investigate their antitumor activity. In vitro, compared to single reagent, AdTRAIL combined with EGFR inhibitors reduced proliferation and enhanced apoptosis in H460, A549, and SW1573 cell lines. Western blot results suggested that these effects were relative to up-regulation of pro-apoptosis protein BAX and down-regulation of p-AKT. In vivo, AdTRAIL combined with cetuximab resulted in a significant growth reduction in H460 xenografts without damage to the main organs of nude mice. Histological examination and TUNEL analyses of xenografts showed that cetuximab enhanced cell apoptosis induced by AdTRAIL. These results indicate that EGFR inhibitors enhanced AdTRAIL anti-tumor activity in NSCLC cell lines and that inhibiting the AKT pathway played an important role in this enhancement.
Adenoviridae
;
genetics
;
Animals
;
Antibodies, Monoclonal
;
pharmacology
;
Antibodies, Monoclonal, Humanized
;
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
Carcinoma, Non-Small-Cell Lung
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Cell Proliferation
;
Cetuximab
;
Drug Synergism
;
Erlotinib Hydrochloride
;
Female
;
Genetic Therapy
;
Genetic Vectors
;
Humans
;
Lung Neoplasms
;
metabolism
;
pathology
;
Mice
;
Mice, Nude
;
Protein Kinase Inhibitors
;
pharmacology
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Quinazolines
;
pharmacology
;
Receptor, Epidermal Growth Factor
;
antagonists & inhibitors
;
Recombinant Proteins
;
genetics
;
metabolism
;
Signal Transduction
;
TNF-Related Apoptosis-Inducing Ligand
;
genetics
;
metabolism
;
physiology
;
Transfection
;
Tumor Burden
;
Xenograft Model Antitumor Assays
;
bcl-2-Associated X Protein
;
metabolism

Result Analysis
Print
Save
E-mail