1.Construction of predictive ceRNA network and identification of the patterns of immune cells infiltrated in Graves ' ophthalmopathy.
Jiamin CAO ; Haiyan CHEN ; Bingyu XIE ; Yizhi CHEN ; Wei XIONG ; Mingyuan LI
Journal of Central South University(Medical Sciences) 2023;48(8):1185-1196
OBJECTIVES:
Graves' ophthalmopathy (GO) is a multifactorial disease, and the mechanism of non coding RNA interactions and inflammatory cell infiltration patterns are not fully understood. This study aims to construct a competing endogenous RNA (ceRNA) network for this disease and clarify the infiltration patterns of inflammatory cells in orbital tissue to further explore the pathogenesis of GO.
METHODS:
The differentially expressed genes were identified using the GEO2R analysis tool. The Kyoto encyclopedia of genes and genomes (KEGG) and gene ontology analysis were used to analyze differential genes. RNA interaction relationships were extracted from the RNA interactome database. Protein-protein interactions were identified using the STRING database and were visualized using Cytoscape. StarBase, miRcode, and DIANA-LncBase Experimental v.2 were used to construct ceRNA networks together with their interacted non-coding RNA. The CIBERSORT algorithm was used to detect the patterns of infiltrating immune cells in GO using R software.
RESULTS:
A total of 114 differentially expressed genes for GO and 121 pathways were detected using both the KEGG and gene ontology enrichment analysis. Four hub genes (SRSF6, DDX5, HNRNPC,and HNRNPM) were extracted from protein-protein interaction using cytoHubba in Cytoscape, 104 nodes and 142 edges were extracted, and a ceRNA network was identified (MALAT1-MIR21-DDX5). The results of immune cell analysis showed that in GO, the proportions of CD8+ T cells and CD4+ memory resting T cells were upregulated and downregulated, respectively. The proportion of CD4 memory resting T cells was positively correlated with the expression of MALAT1, MIR21, and DDX5.
CONCLUSIONS
This study has constructed a ceRNA regulatory network (MALAT1-MIR21-DDX5) in GO orbital tissue, clarifying the downregulation of the proportion of CD4+ stationary memory T cells and their positive regulatory relationship with ceRNA components, further revealing the pathogenesis of GO.
Humans
;
CD8-Positive T-Lymphocytes
;
RNA, Long Noncoding/genetics*
;
Algorithms
;
CD4-Positive T-Lymphocytes
;
Down-Regulation
;
Graves Ophthalmopathy/genetics*
;
Gene Regulatory Networks
;
MicroRNAs/genetics*
;
Serine-Arginine Splicing Factors
;
Phosphoproteins
2.Mechanism of Jiming Powder in ameliorating heart failure with preserved ejection fraction based on metabolomics.
Xiao-Qi WEI ; Xin-Yi FAN ; Hai-Yin PU ; Shuai LI ; Jia-Yang TANG ; Kuo GAO ; Fang-He LI ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2023;48(17):4747-4760
In this study, untargeted metabolomics was conducted using the liquid chromatography-tandem mass spectrometry(LC-MS/MS) technique to analyze the potential biomarkers in the plasma of mice with heart failure with preserved ejection fraction(HFpEF) induced by a high-fat diet(HFD) and nitric oxide synthase inhibitor(Nω-nitro-L-arginine methyl ester hydrochloride, L-NAME) and explore the pharmacological effects and mechanism of Jiming Powder in improving HFpEF. Male C57BL/6N mice aged eight weeks were randomly assigned to a control group, a model group, an empagliflozin(10 mg·kg~(-1)·d~(-1)) group, and high-and low-dose Jiming Powder(14.3 and 7.15 g·kg~(-1)·d~(-1)) groups. Mice in the control group were fed on a low-fat diet, and mice in the model group and groups with drug intervention were fed on a high-fat diet. All mice had free access to water, with water in the model group and Jiming Powder groups being supplemented with L-NAME(0.5 g·L~(-1)). Drugs were administered on the first day of modeling, and 15 weeks later, blood pressure and cardiac function of the mice in each group were measured. Heart tissues were collected for hematoxylin-eosin(HE) staining to observe pathological changes and Masson's staining to observe myocardial collagen deposition. Untargeted metabolomics analysis was performed on the plasma collected from mice in each group, and metabolic pathway analysis was conducted using MetaboAnalyst 5.0. The results showed that the blood pressure was significantly lower and the myocardial concentric hypertrophy and left ventricular diastolic dysfunction were significantly improved in both the high-dose and low-dose Jiming Powder groups as compared with those in the model group. HE and Masson staining showed that both high-dose and low-dose Jiming Powder significantly alleviated myocardial fibrosis. In the metabolomics experiment, 23 potential biomarkers were identified and eight strongly correlated metabolic pathways were enriched, including linoleic acid metabolism, histidine metabolism, alpha-linolenic acid metabolism, glycerophospholipid metabolism, purine metabolism, porphyrin and chlorophyll metabolism, arachidonic acid metabolism, and pyrimidine metabolism. The study confirmed the pharmacological effects of Jiming Powder in lowering blood pressure and ameliorating HFpEF and revealed the mechanism of Jiming Powder using the metabolomics technique, providing experimental evidence for the clinical application of Jiming Powder in treating HFpEF and a new perspective for advancing and developing TCM therapy for HFpEF.
Male
;
Mice
;
Animals
;
Heart Failure/metabolism*
;
Powders
;
Stroke Volume/physiology*
;
Chromatography, Liquid
;
NG-Nitroarginine Methyl Ester/therapeutic use*
;
Mice, Inbred C57BL
;
Tandem Mass Spectrometry
;
Metabolomics
;
Biomarkers
;
Water
3.Mechanism of Danggui Sini Decoction in improving kidney injury caused by blood stasis syndrome based on metabolomics and network pharmacology.
Lin-Lin FENG ; Si-Qi TANG ; Yun-Yuan NONG ; Ying HE ; Qian-Yi WANG ; Jing-Hua QIN ; Yue GUO ; Zhi-Heng SU
China Journal of Chinese Materia Medica 2023;48(24):6730-6739
This article analyzed the mechanism of Danggui Sini Decoction(DSD) in improving kidney injury caused by blood stasis syndrome(BSS) in rats. Firstly, 32 female SD rats were randomly divided into the following four groups: a normal group and a BSS group, both receiving an equal amount of distilled water by gavage; a normal+DSD group and a BSS+DSD group, both receiving 5.103 g·kg~(-1) DSD orally for a total of 14 days. Daily cold water bath was given to establish the BSS model, and on the 14th day, BSS rats were subcutaneously injected with 0.8 mg·kg~(-1) adrenaline. Normal rats were subjected to the water bath at 37 ℃ and injected with an equal volume of distilled water. After the experiment, 24-hour urine, serum, and kidney samples were collected for metabolomic analysis, biochemical measurements, and hematoxylin-eosin(HE) staining. The study then employed ~1H-NMR metabolomic technology to reveal the metabolic network regulated by DSD in improving BSS-induced kidney injury and used network pharmacology to preliminarily elucidate the key targets of the effectiveness of DSD. Pathological and biochemical analysis showed that DSD intervention significantly reduced inflammation and abnormal levels of blood creatinine, blood urea nitrogen, and urine protein in the kidneys. Metabolomic analysis indicated that DSD attenuated BSS-induced kidney injury primarily by regulating 10 differential metabolites and three major metabolic pathways(taurine and hypotaurine metabolism, citrate cycle, and acetaldehyde and dicarboxylic acid metabolism). Network pharmacology analysis suggested that the protective effect of DSD against BSS-induced kidney injury might be related to two key genes, ATP citrate lyase(ACLY) and nitric oxide synthase 2(NOS2), and two main metabolic pathways, i.e., arginine biosynthesis, and arginine and proline metabolism. This study, from the perspective of network regulation, provides initial insights and evidence into the mechanism of DSD in improving kidney injury induced by BSS, offering a basis for further investigation into the molecular mechanisms underlying its efficacy.
Rats
;
Female
;
Animals
;
Rats, Sprague-Dawley
;
Network Pharmacology
;
Drugs, Chinese Herbal/chemistry*
;
Metabolomics
;
Kidney
;
Arginine
;
Water
4.The mechanism of microcystin leucine-arginine (MC-LR)-induced injury of Sertoli cell immune response and biological behavior.
Kaili ZHU ; Changcheng ZHANG ; Xiaoping WU ; Shangyu LIU ; Xueyi ZHAO ; Ding YUAN ; Haixia ZHAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(8):753-758
Microcystin-leucine arginine (MC-LR), a potentially carcinogenic toxin, is produced by Cyanobacteria such as Microcystis and Ananabacteria during water bloom. Increasing evidence demonstrated that MC-LR induces male reproductive toxicity, mainly by inducing germ cell apoptosis, destroying cell cytoskeleton, interfering with DNA damage repair pathway, and damaging blood-testicular barrier (BTB), which eventually lead to male sterility. Testicular Sertoli cells are the somatic cells that directly contact with spermatogenic cells in seminiferous tubules. They not only regulate immune response to maintain testicular immune homeostasis by secreting a variety of cytokines and immunosuppressive factors, but also provide the protective effects of spermatogenic cells by forming BTB. MC-LR induces inflammation and apoptosis of Sertoli cells, and destroys the integrity of the BTB, and then causes spermatogenesis dysfunction.
Male
;
Humans
;
Sertoli Cells
;
Leucine/pharmacology*
;
Arginine/pharmacology*
;
Microcystins/metabolism*
;
Immunity
6.lncR-GAS5 upregulates the splicing factor SRSF10 to impair endothelial autophagy, leading to atherogenesis.
Yuhua FAN ; Yue ZHANG ; Hongrui ZHAO ; Wenfeng LIU ; Wanqing XU ; Lintong JIANG ; Ranchen XU ; Yue ZHENG ; Xueqing TANG ; Xiaohan LI ; Limin ZHAO ; Xin LIU ; Yang HONG ; Yuan LIN ; Hui CHEN ; Yong ZHANG
Frontiers of Medicine 2023;17(2):317-329
Long noncoding RNAs (lncRNAs) play a critical role in the regulation of atherosclerosis. Here, we investigated the role of the lncRNA growth arrest-specific 5 (lncR-GAS5) in atherogenesis. We found that the enforced expression of lncR-GAS5 contributed to the development of atherosclerosis, which presented as increased plaque size and reduced collagen content. Moreover, impaired autophagy was observed, as shown by a decreased LC3II/LC3I protein ratio and an elevated P62 level in lncR-GAS5-overexpressing human aortic endothelial cells. By contrast, lncR-GAS5 knockdown promoted autophagy. Moreover, serine/arginine-rich splicing factor 10 (SRSF10) knockdown increased the LC3II/LC3I ratio and decreased the P62 level, thus enhancing the formation of autophagic vacuoles, autolysosomes, and autophagosomes. Mechanistically, lncR-GAS5 regulated the downstream splicing factor SRSF10 to impair autophagy in the endothelium, which was reversed by the knockdown of SRSF10. Further results revealed that overexpression of the lncR-GAS5-targeted gene miR-193-5p promoted autophagy and autophagic vacuole accumulation by repressing its direct target gene, SRSF10. Notably, miR-193-5p overexpression decreased plaque size and increased collagen content. Altogether, these findings demonstrate that lncR-GAS5 partially contributes to atherogenesis and plaque instability by impairing endothelial autophagy. In conclusion, lncR-GAS5 overexpression arrested endothelial autophagy through the miR-193-5p/SRSF10 signaling pathway. Thus, miR-193-5p/SRSF10 may serve as a novel treatment target for atherosclerosis.
Humans
;
Atherosclerosis/genetics*
;
Autophagy/genetics*
;
Cell Cycle Proteins/metabolism*
;
Endothelial Cells/metabolism*
;
Endothelium/metabolism*
;
MicroRNAs/metabolism*
;
Repressor Proteins/metabolism*
;
RNA Splicing Factors
;
Serine-Arginine Splicing Factors/genetics*
;
RNA, Long Noncoding/metabolism*
7.Treatment and management for children with urea cycle disorder in chronic stage.
Journal of Zhejiang University. Medical sciences 2023;52(6):744-750
Urea cycle disorder (UCD) is a group of inherited metabolic diseases with high disability or fatality rate, which need long-term drug treatment and diet management. Except those with Citrin deficiency or liver transplantation, all pediatric patients require lifelong low protein diet with safe levels of protein intake and adequate energy and lipids supply for their corresponding age; supplementing essential amino acids and protein-free milk are also needed if necessary. The drugs for long-term use include nitrogen scavengers (sodium benzoate, sodium phenylbutyrate, glycerol phenylbutyrate), urea cycle activation/substrate supplementation agents (N-carbamylglutamate, arginine, citrulline), etc. Liver transplantation is recommended for pediatric patients not responding to standard diet and drug treatment, and those with severe progressive liver disease and/or recurrent metabolic decompensations. Gene therapy, stem cell therapy, enzyme therapy and other novel technologies may offer options for treatment in UCD patients. The regular biochemical assessments like blood ammonia, liver function and plasma amino acid profile are needed, and physical growth, intellectual development, nutritional intake should be also evaluated for adjusting treatment in time.
Humans
;
Child
;
Citrullinemia/drug therapy*
;
Urea Cycle Disorders, Inborn/therapy*
;
Arginine
;
Sodium Benzoate/therapeutic use*
;
Liver Transplantation
9.Mechanism of emodin in relieving neuropathic pain by regulating serum metabolism.
Peng CHEN ; Chen WANG ; Rui-Xi LUO ; Zhi-Bing WU ; Dong-Bin XIA
China Journal of Chinese Materia Medica 2022;47(8):2187-2194
The present study investigated the effect of emodin on the serum metabolite profiles in the chronic constriction injury(CCI) model by non-target metabolomics and explored its analgesic mechanism. Twenty-four Sprague Dawley(SD) rats were randomly divided into a sham group(S), a CCI group(C), and an emodin group(E). The rats in the emodin group were taken emodin via gavage once a day for fifteen days(50 mg·kg~(-1)) on the first day after the CCI surgery. Mechanical withdrawal threshold(MWT) and thermal withdrawal threshold(TWL) in each group were performed before the CCI surgery and 3,7, 11, and 15 days after surgery. After 15 days, blood samples were collected from the abdominal aorta. The differential metabolites were screened out by non-target metabolomics and analyzed with Kyoto Encyclopedia of Genes and Genomes(KEGG) and ingenuity pathway analysis(IPA). From the third day after CCI surgery, the MWT and TWL values were reduced significantly in both CCI group and emodin group, compared with the sham group(P<0.01). At 15 days post-surgery, the MWT and TWL values in emodin group increased significantly compared with the CCI group(P<0.05). As revealed by non-target metabolomics, 72 differential serum metabolites were screened out from the C-S comparison, including 41 up-regulated and 31 down-regulated ones, while 26 differential serum metabolites from E-C comparison, including 10 up-regulated and 16 down-regulated ones. KEGG analysis showed that the differential metabolites in E-C comparison were enriched in the signaling pathways, such as sphingolipid metabolism, arginine biosynthesis, glycerophospholipid metabolism, and tryptophan metabolism. IPA showed that the differential metabolites were mainly involved in the lipid metabolism-molecular transport-small molecule biochemistry network. In conclusion, emodin can exert an analgesic role via regulating sphingolipid metabolism and arginine biosynthesis.
Analgesics/pharmacology*
;
Animals
;
Arginine
;
Emodin/pharmacology*
;
Neuralgia/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Sphingolipids
10.Association of asymmetric dimethylarginine with the pathological process of persistent pulmonary hypertension of the newborn.
Wen-Ting ZHANG ; Qin LU ; Jie-Jun DING ; Meng GU
Chinese Journal of Contemporary Pediatrics 2022;24(1):54-59
OBJECTIVES:
To study the change in asymmetric dimethylarginine (ADMA) in the circulation system of full-term infants with persistent pulmonary hypertension of the newborn (PPHN) and its association with treatment response, as well as the possibility of ADMA as a therapeutic target and a marker for treatment response.
METHODS:
A prospective study was performed. A total of 30 full-term neonates who were diagnosed with PPHN within 3 days after birth were enrolled as the PPHN group, and the neonates without PPHN, matched for gestational age and age, who were treated or observed in the department of neonatology were enrolled as the control group. Serum samples were collected on days 1, 7, and 14 of treatment. The high-performance liquid chromatography-tandem mass spectrometry was used to measure the serum concentrations of L-arginine, ADMA, and its isomer symmetric dimethylarginine (SDMA).
RESULTS:
For the neonates in the control group, the serum concentrations of ADMA and L-arginine continuously increased and the serum concentration of SDMA continuously decreased within the first 14 days of treatment. On days 1 and 14, there was no significant difference in the serum concentration of ADMA between the control and PPHN groups (P>0.05). On day 7, the PPHN group had a significantly higher serum concentration of ADMA than the control group (P<0.05), while there were no significant differences in serum concentrations of SDMA or L-arginine (P>0.05). Moreover, after 7 days of treatment, the PPHN neonates with a systolic pulmonary arterial pressure (sPAP) of >35 mmHg had a significantly higher serum concentration of ADMA than those with an sPAP of ≤35 mm Hg.
CONCLUSIONS
There are continuous increases in the ADMA concentration and the ADMA/SDMA ratio in the circulation system of full-term infants within the first 2 weeks after birth, and this process is accelerated by the pathological process of PPHN, suggesting that ADMA may be involved in the pathologic process of PPHN. A high level of ADMA is associated with the resistance to PPHN treatment, suggesting that inhibition of ADMA might be a potential target of drug intervention to improve the treatment response of PPHN.
Arginine/analogs & derivatives*
;
Biomarkers
;
Humans
;
Hypertension, Pulmonary/drug therapy*
;
Infant, Newborn
;
Prospective Studies

Result Analysis
Print
Save
E-mail