1.Herbal Textual Research on Arcae Concha in Famous Classical Formulas
Yiqin ZHANG ; Yixue ZHUANG ; Yinan LU ; Yanning CHEN ; Yichong CHEN ; Shuiyu XU ; Zhilai ZHAN ; Chengzi YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):208-218
In this paper, the name, origin, producing area, harvesting, processing and functional indications of Arcae Concha were systematically combed and verified by consulting the ancient and modern literature, in order to provide a basis for the development of famous classical formulas containing Arcae Concha. Arcae Concha was first recorded in the name of Han in Bencao Shiyi, but later, due to the influence of LI Shizhen's error of combining Han item with Kuiha in the Ming dynasty, there were aliases such as Kuilu and Fulao, and Yizong Bidu began to include Walengzi as its correct name and has been used ever since. The textual descriptions and illustrations of the medicinal materials of Arcae Concha contained in the materia medica of the past generations were consistent with the modern Arca inflata, A. subcrenata and A. granosa. In ancient times, there were medicinal records of two parts of shell and meat, but now the shell is used as medicine, and the meat is mostly edible. In ancient times, Zhejiang, Shandong, Guangdong and Guangxi were the main producing areas, and Zhejiang was the best. It is now believed that A. inflata is mostly distributed in the northern part of the Huanghai Sea, A. granosa is mostly distributed in the coastal areas south of Shandong Peninsula in China, and A. subcrenata is widely distributed in the coastal areas of China. Its quality is better in a complete, white, no residual meat and sand. In ancient times, there was no clear harvesting period, and the processing was mainly based on vinegar quenching after calcination or powdering of calcined shell, but now the harvesting period is autumn and winter. After harvesting, it is directly washed and crushed for raw use or processed by calcined method. The records of the medicinal materials in the past dynasties on the properties of Arcae Concha were mainly warm, sweet, salty and mild, and it is now believed that Arcae Concha is salty in taste and mild in nature. In ancient times, it was believed that Arcae Concha were mainly used for coldness in the heart and abdomen, coldness in the waist and spine, benefiting the five internal organs, strengthening the stomach. Nowadays, it is believed that Arcae Concha can eliminate phlegm and remove blood stasis, soften the hardness and dissipate the lumps, produce acid and relieve pain. It can be used in the treatment of stubborn phlegm, gall tumor, scrofula and other symptoms. In conclusion, it is suggested that for the famous classical formulas containing Arcae Concha, the corresponding methods should be selected according to the processing requirements of the drug in the formulas, while those without processing requirements can be determined according to the functional position of the products.
2.Herbal Textual Research on Spatholobi Caulis in Famous Classical Formulas
Yajie XIANG ; Yangyang LIU ; Jian FENG ; Chun YAO ; Erwei HAO ; Wenlan LI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):238-248
Through consulting herbal medicine, medical books, and local chronicles from past dynasties to modern times, this paper systematically researched Spatholobi Caulis from name, origin, producing areas, harvesting, processing, usage, quality evaluation, functions and indications, providing a reference for the development and utilization of famous classical formulas containing Spatholobi Caulis. According to the research, Spatholobi Caulis was first recorded in the Annals of Shunning Prefecture from the Qing dynasty. It was originally a medicinal herb commonly used in Shunning, Yunnan, and was named from the red juice resembling chicken blood that flowed out after the vein was cut off. The mainstream original plants of each dynasty were Kadsura heteroclita and Spatholobus suberectus. Among them, K. heteroclita mainly focused on dispersing blood stasis and unblocking meridians, mainly treating rheumatic pain and injuries caused by falls or blows, and it is mostly used as the raw material of Jixueteng ointments. S. suberectus was commonly used as decoction pieces in decoction, which had the functions of promoting blood circulation and replenishing blood, activating meridians and collaterals, and mainly used for treating anemia, irregular menstruation, and rheumatic bone pain. The production area of Spatholobi Caulis recorded in the Qing dynasty was Yunnan. Currently, the main production area of S. suberectus is Guangxi, while the main production area of K. interior is Yunnan. In the Qing dynasty, the usage of Spatholobi Caulis was an individual prescription with other herbs before making ointments, which was usually composed of the juice of it, safflower, angelica, and glutinous rice. But in modern times, Spatholobi Caulis is mostly sliced and dried for use. The quality of Spatholobi Caulis is often determined by the number of reddish-brown concentric circles on the cut surface, with a higher number indicating better quality. Additionally, the presence of resinous secretions is also considered desirable. Based on the research findings, it is suggested that when developing famous classical formulas containing Spatholobi Caulis, the choice of the primary source should be S. suberectus or K. heteroclita, taking into consideration the therapeutic effects of the formula. It is also recommended that the latest plant classification be referenced in the next edition of Chinese Pharmacopoeia, adjusting the primary source of Kadsurae Caulis to K. heteroclita to avoid confusion caused by inconsistent original names, and the functions adjust to promote Qi circulation and relieve pain, disperse blood stasis and unblock collaterals, treating injuries caused by falls and bruises.
3.The Ameliorate Effect of Piezo1 Signaling Pathway on Diabetes Mellitus Type 2 in Exercise Intervention
Progress in Biochemistry and Biophysics 2025;52(2):290-298
Diabetes mellitus type 2 (T2DM) is one of the most common metabolic diseases in the world and has a significant impact on the health of patients. As a key factor in cellular mechanical transduction, Piezo1 protein plays a crucial role in regulating the basic life activities of the body. By participating in energy metabolism, it not only promotes the improvement of basic metabolic rate, but also helps to maintain the stability of the internal environment of the body. The activation of Piezo1 pathway has a significant effect on the release of insulin by islet beta cells, and also plays an important role in the production of adipose tissue after food intake. This study reviews the effects of exercise intervention on the expression and function of Piezo1 protein, as well as its role in metabolic regulation and insulin level regulation in T2DM patients. The study showed that a modest exercise intervention activated Piezo1 signaling pathway, which improved insulin sensitivity and improved sugar metabolism. In addition, the activation of Piezo1 pathway is closely related to the metabolic regulation of adipose tissue, helping to regulate the differentiation and maturation of adipose cells, thereby affecting the metabolic function of adipose tissue. Based on a comprehensive analysis of existing literature, Piezo1 pathway is found to play a complex role in the pathogenesis of T2DM. Exercise intervention, as a non-drug therapy, provides a new strategy for the treatment of T2DM by activating Piezo1 signaling pathway. However, the exact mechanism of action of Piezo1 pathway in T2DM still needs further investigation. Future studies should focus on the interaction between the Piezo1 pathway and T2DM, and how to regulate the Piezo1 pathway to optimize treatment for T2DM. The effects of exercise intervention on Piezo1 protein and its role in metabolic regulation and insulin level regulation of T2DM patients were comprehensively analyzed in this paper, aiming to provide a new perspective for further research and development of therapeutic strategies for metabolic diseases such as diabetes and obesity.
4.Herbal Textual Research on Malvae Semen in Famous Classical Formulas
Dongxue CHEN ; Yibo LIU ; Yangyang YU ; Guoshuai LYU ; Huili WU ; Xinle HAN ; Yue TAN ; Minhui LI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):252-264
The medicinal use of Malvae Semen has a long history. In this paper, by consulting the ancient materia medica, prescription, agronomy, literature and other aspects of the classics, the name, origin, evolution of scientific name, quality, harvesting and processing, functions and indications and others of Malvae Semen were systematically sorted out and verified, so as to provide a basis for the development and utilization of famous classical formulas containing this herb. According to the textual research, Shennong Bencaojing began to use Dongkuizi as the correct name, which was used in the past dynasties, and there were also aliases such as Kuicaizi, Huacai, and Kuizi. Through the original research, it can be seen that Kuicai is the mainstream original plant of Malvae Semen, that is, Malva verticillata var. crispa, the Alcea rosea and M. cathayensis are also used. In modern times, the seeds of Abutilon theophrasti have been passed off as Malvae Semen, while the seeds of M. verticillata var. crispa have rarely been used in medicine. And Abutili Semen has been another medicinal material with different efficacy since the collection of Newly Revised Materia Medica in the Tang dynasty. Since the Ming and Qing dynasties, the cultivation of Kuicai has been decreasing, while A. theophrasti is more common and easy to obtain, and Abutili Semen and Malvae Semen are similar in morphology and confused, which should be corrected. In addition, Malvae Fructus is a Mongolian customary medicinal herb, which is different from the traditional use of seeds in traditional Chinese medicine. Kuicai, as an important vegetable in history, was widely cultivated and gradually shrunk after the Song dynasty, it is now mainly produced in southern provinces. The quality evaluation of Malvae Semen is better for those with dry bodies, full grain, grayish brown color, no mud, and no impurities. The harvesting is generally in the autumn and winter. After drying, it is seeded, sieved peel and impurities, mashed, or slightly stir-fried to yellow-white color with gentle fire. It is sweet, cold and slippery in nature and taste, with the main effects of laxation, diuresis, lactation and elimination of swelling. The efficacy of Abutili Semen is clearing heat and removing toxicity, promoting diuresis and removing nebula, the efficacy is quite different from that of Malvae Semen. Based on the results of textual research, it is suggested that M. verticillata var. crispa should be used as the medicinal source of Malvae Semen in the development of famous classical formulas, the corresponding processing methods should be selected according to the requirements of drug processing in the formulas, while the raw products are recommended to be used if the processing is not specified.
5.Herbal Textual Research on Malvae Semen in Famous Classical Formulas
Dongxue CHEN ; Yibo LIU ; Yangyang YU ; Guoshuai LYU ; Huili WU ; Xinle HAN ; Yue TAN ; Minhui LI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):252-264
The medicinal use of Malvae Semen has a long history. In this paper, by consulting the ancient materia medica, prescription, agronomy, literature and other aspects of the classics, the name, origin, evolution of scientific name, quality, harvesting and processing, functions and indications and others of Malvae Semen were systematically sorted out and verified, so as to provide a basis for the development and utilization of famous classical formulas containing this herb. According to the textual research, Shennong Bencaojing began to use Dongkuizi as the correct name, which was used in the past dynasties, and there were also aliases such as Kuicaizi, Huacai, and Kuizi. Through the original research, it can be seen that Kuicai is the mainstream original plant of Malvae Semen, that is, Malva verticillata var. crispa, the Alcea rosea and M. cathayensis are also used. In modern times, the seeds of Abutilon theophrasti have been passed off as Malvae Semen, while the seeds of M. verticillata var. crispa have rarely been used in medicine. And Abutili Semen has been another medicinal material with different efficacy since the collection of Newly Revised Materia Medica in the Tang dynasty. Since the Ming and Qing dynasties, the cultivation of Kuicai has been decreasing, while A. theophrasti is more common and easy to obtain, and Abutili Semen and Malvae Semen are similar in morphology and confused, which should be corrected. In addition, Malvae Fructus is a Mongolian customary medicinal herb, which is different from the traditional use of seeds in traditional Chinese medicine. Kuicai, as an important vegetable in history, was widely cultivated and gradually shrunk after the Song dynasty, it is now mainly produced in southern provinces. The quality evaluation of Malvae Semen is better for those with dry bodies, full grain, grayish brown color, no mud, and no impurities. The harvesting is generally in the autumn and winter. After drying, it is seeded, sieved peel and impurities, mashed, or slightly stir-fried to yellow-white color with gentle fire. It is sweet, cold and slippery in nature and taste, with the main effects of laxation, diuresis, lactation and elimination of swelling. The efficacy of Abutili Semen is clearing heat and removing toxicity, promoting diuresis and removing nebula, the efficacy is quite different from that of Malvae Semen. Based on the results of textual research, it is suggested that M. verticillata var. crispa should be used as the medicinal source of Malvae Semen in the development of famous classical formulas, the corresponding processing methods should be selected according to the requirements of drug processing in the formulas, while the raw products are recommended to be used if the processing is not specified.
6.Exploring the Relationship Between Liver and Executive Function Decline Based on "the Liver Governs the Designing of Strategy"
Lei HUO ; Yanan DENG ; Jinchai DENG ; Yan ZHANG ; Xueyuan DU ; Xianghong ZHAN
Journal of Traditional Chinese Medicine 2025;66(2):201-204
The concept of "spirit" in traditional Chinese medicine (TCM) aligns closely with "the liver governs the designing of strategy". By exploring the relationship between the liver and executive function decline, it is proposed that prolonged liver constraint leads to indecisiveness in strategy designing, which is the initiating factor for executive function decline; liver blood deficiency causes difficulties in executing strategy, which forms an essential foundation for the progression of executive function decline; obstruction in the "liver-du mai-brain" pathway leads to unclear strategy designing, which accelerates executive function decline. This relationship is examined from the perspectives of TCM, modern medicine, and cognitive psychology, aiming to provide insights into addressing executive function decline through treatments focused on the liver.
7.Herbal Textual Research on Dioscoreae Hypoglaucae Rhizoma, Dioscoreae Spongiosae Rhizoma, Smilacis Chinae Rhizoma and Smilacis Glabrae Rhizoma in Famous Classical Formulas
Li LU ; Yichen YANG ; Erhuan WANG ; Hui CHANG ; Li AN ; Shibao WANG ; Cunde MA ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):218-247
This article systematically reviews and verifies the medicinal materials of Dioscoreae Hypoglaucae Rhizoma(DHR), Dioscoreae Spongiosae Rhizoma(DSR), Smilacis Chinae Rhizoma(SCR) and Smilacis Glabrae Rhizoma(SGR) from the aspects of name, origin, producing area, quality, harvesting, processing and efficacy by consulting historical literature, in order to provide reference for the development and utilization of famous classical formulas containing the four medicinal materials. DHR, DSR, SCR and SGR have a long history of application as medicinal materials. However, due to their similar growth environment and medicinal properties, as well as their functions of promoting dampness, dispelling wind and removing numbness, there have been instances of homonymous foreign objects and homonymous synonyms throughout history, resulting in confusion of the origin. Therefore, it is necessary to conduct comparative analysis and systematic research for clarifying the historical development and changes of the four, in order to provide a basis for safe and effective medication. According to research, Bixie was first recorded in Shennong Bencaojing and has been historically known as Baizhi, Chijie, Zhumu, and other aliases. From ancient times to the mid-20th century, there has always been a situation where the rhizomes of Dioscorea plants and Smilax plants, and even the rhizomes of Heterosmilax plants, were mixed together to be used as medicinal herbs for Bixie. However, since the Tang dynasty, it has been clearly advocated that the rhizomes of Dioscorea plants have excellent quality and have been the mainstream throughout history. The 2020 edition of Chinese Pharmacopoeia categorized it into two types of medicinal herbs(DHR and DSR). Among them, the origin of DHR is the dry rhizomes of Dioscorea hypoglauca, and the origins of DSR are the dry rhizomes of D. spongiosa and D. futschauensis. In ancient times, due to different types, the corresponding production areas of DHR and DSR were also different. Nowadays, They are mainly produced in the southern region of the Yangtze River. Since the Tang dynasty, the quality of Bixie has been characterized by its white color and soft nature. In modern times, it has been summarized that those with white color, large and thin pieces, powdery texture, tough and elastic texture, and neat and unbreakable are the best. The harvesting times of DHR and DSR are in spring or autumn, with the best quality harvested in autumn. The mainstream processing methods of them are slicing and then using the raw products or wine-processed products. SCR was first recorded in Mingyi Bielu and has been known as Jinganggen, Tielingjiao, Tieshuazi, and other aliases in history. The mainstream source is the dry rhizomes of Smilax china in the past dynasties, with the best quality being those that are tough and rich in powder. The harvesting time is from the late autumn to the following spring, and the main processing method throughout history has been slicing for raw use. SGR was first recorded under the item of Yuyuliang in Variorum of Shennong's Classic of Materia Medica. It was listed as an independent medicinal material from Bencao Gangmu. In history, there were such aliases as Cao Yuyuliang, Lengfantuan, Xianyiliang, Tubixie, etc. The main source of the past dynasties was dry rhizomes of S. glabra. In history, there have also been instances of multiple plants belonging to the same genus, and even cases of mixing the rhizomes of plants in the genus Heterosmilax. It is mainly produced in Guangdong, Hunan, Hubei, Zhejiang, Sichuan, Anhui and other regions, its quality has been summarized as large in size, powdery in texture, with few veins, and light brown in cross-section since modern times. The harvesting time is in spring or autumn, and the main processing method throughout history has been slicing for raw use. DHR, DSR, SCR and SGR all have the effects of promoting dampness, dispelling wind, relieving rheumatism and detoxifying. However, their detoxification abilities are ranked as follows:SGR>SCR>Bixie(DHR and DSR). Especially for the treatment of limb spasms, arthralgia and myalgia, scrofula, and scabies caused by syphilis and mercury poisoning, SGR has a unique effect. Based on the research results, DHR is recommended to develop the famous classical formulas containing Bixie as the first choice for medicinal herbs. It should be harvested in autumn, sliced thinly while fresh, and processed according to the requirements of the famous classical formulas, without any requirements for raw use. Selecting the rhizomes of S. china, harvested in late autumn, and thinly sliced while fresh. If there are no special processing requirements in the formulas, use it raw. Selecting the rhizomes of S. glabra, it is harvested in autumn and thinly sliced while fresh. If there are no special processing requirements in the formulas, raw products can be used.
8.Effects of Modified shaoyao gancao decoction on intestinal transit function,intestinal flora and metabolite content in slow transit constipation rat
Ziqi ZHANG ; Hongyun ZHOU ; Qiong ZHAO ; Yuan DENG ; Yu ZHAN
China Pharmacy 2025;36(2):154-159
OBJECTIVE To observe the effects of Modified shaoyao gancao decoction on intestinal transit function, intestinal flora and the contents of metabolites [γ aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT)] in slow transit constipation (STC) rats. METHODS SD rats were randomly divided into blank group (10 rats) and modeling group (30 rats), with half male and half female. The STC model was established by intragastric administration of Compound diphenoxylate tablets in the modeling group. The successfully modeled rats were randomly divided into model group, Modified shaoyao gancao decoction group [56 g/(kg·d), calculated by crude drug] and positive control group [lactulose 2.09 g/(kg·d)], with 10 rats in each group. Each administration group was given relevant medicine intragastrically, the blank group and model group received an equivalent volume of normal saline, once a day, for 14 consecutive days. During the experiment, the general situation of rats was observed in each group. After the last medication, the body weight was measured, and the Bristol score was used to evaluate the fecal characteristics. The fecal moisture content, intestinal propulsion rate, and the contents of GABA and 5-HT in intestinal content were detected; the diversity of intestinal flora in intestinal contents was investigated, and the correlation between the contents of GABA, 5-HT and relative abundance of microbiota was analyzed. RESULTS Compared with the model group, general conditions such as small body shape, sparse and rough fur, and slow movement were all improved in Modified shaoyao gancao decoction body weight, Bristol score, fecal moisture content,intestinal propulsion rate, 5-HT content, Chao1 index and Shannon index were increased significantly, while GABA content and Simpson index were decreased significantly (P<0.05). The intestinal flora of rats in the Modified shaoyao gancao decoction group could be classified as the same as the blank group, but was far from the model group; the relative abundances of Desulfobacterota, Firmicutes and Bacteroidota in this group showed a tendency of pull back, but the differences were not statistically significant compared to model group (P>0.05). Desulfobacterota was an intergroup differential factor (P<0.05). The content of GABA was negatively correlated with the relative abundance of Bacteroidota, Cyanobacteria, Patescibacteria and Actinobacteriota (P<0.05). The content of 5-HT was positively correlated with the relative abundance of Campilobacterota (P<0.05). CONCLUSIONS Modified shaoyao gancao decoction can improve the fecal properties and intestinal motility of STC rats. Its mechanism may be related to improving intestinal flora and then affecting the contents of GABA and 5-HT in intestinal contents. In addition, the contents of GABA and 5-HT may be significantly correlated with the relative abundance of specific bacterial phyla such as Bacteroidota and Campilobacterota.
9.Optimization of Rh blood group antigen precision transfusion strategy across multiple hospital campuses by PDCA circle
Qiming YING ; Luyan CHEN ; Kedi DONG ; Yiwen HE ; Yating ZHAN ; Yexiaoqing YANG ; Feng ZHAO ; Dingfeng LYU
Chinese Journal of Blood Transfusion 2025;38(1):106-111
[Objective] To explore the effectiveness of applying the PDCA (Plan-Do-Check-Act) cycle to enhance the compatibility rate of five Rh blood group antigen phenotypes between donors and recipients across multiple hospital campuses. [Methods] Clinical blood transfusion data from May to July 2022 were selected. Specific improvement measures were formulated based on the survey results, and the PDCA cycle management model was implemented from August 2022. The post-intervention phase spanned from August 2022 to October 2023. The Rh phenotype compatibility rate, the detection rate of Rh system antibodies, and the proportion of Rh system antibodies among unexpected antibodies were compared between the pre-intervention phase (May to July 2022) and the post-intervention phase. [Results] After the continuous improvement with the PDCA cycle, the compatibility rate for the five Rh blood group antigen phenotypes between donors and recipients from August to October 2023 reached 81.90%, significantly higher than the 70.54% recorded during the pre-intervention phase (May to July 2022, P<0.01), and displayed a quarterly upward trend (β=0.028, P<0.05). The detection rate of Rh blood group system antibodies (β=-9.839×10-5, P<0.05) and its proportion among all detected antibodies (β=-0.022, P<0.05) showed a quarterly decreasing trend, both demonstrating a negative correlation with the enhanced compatibility rate (r values of -0.981 and -0.911, respectively; P<0.05). [Conclusion] The implementation of targeted measures through the PDCA cycle can effectively increase the compatibility rate of five Rh blood group antigen phenotypes between donors and recipients, reduce the occurrence of unexpected Rh blood group antibodies, thereby lowering the risk of transfusion and enhancing the quality and safety of medical care.
10.Effects of Modified shaoyao gancao decoction on intestinal transit function,intestinal flora and metabolite content in slow transit constipation rat
Ziqi ZHANG ; Hongyun ZHOU ; Qiong ZHAO ; Yuan DENG ; Yu ZHAN
China Pharmacy 2025;36(2):154-159
OBJECTIVE To observe the effects of Modified shaoyao gancao decoction on intestinal transit function, intestinal flora and the contents of metabolites [γ aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT)] in slow transit constipation (STC) rats. METHODS SD rats were randomly divided into blank group (10 rats) and modeling group (30 rats), with half male and half female. The STC model was established by intragastric administration of Compound diphenoxylate tablets in the modeling group. The successfully modeled rats were randomly divided into model group, Modified shaoyao gancao decoction group [56 g/(kg·d), calculated by crude drug] and positive control group [lactulose 2.09 g/(kg·d)], with 10 rats in each group. Each administration group was given relevant medicine intragastrically, the blank group and model group received an equivalent volume of normal saline, once a day, for 14 consecutive days. During the experiment, the general situation of rats was observed in each group. After the last medication, the body weight was measured, and the Bristol score was used to evaluate the fecal characteristics. The fecal moisture content, intestinal propulsion rate, and the contents of GABA and 5-HT in intestinal content were detected; the diversity of intestinal flora in intestinal contents was investigated, and the correlation between the contents of GABA, 5-HT and relative abundance of microbiota was analyzed. RESULTS Compared with the model group, general conditions such as small body shape, sparse and rough fur, and slow movement were all improved in Modified shaoyao gancao decoction body weight, Bristol score, fecal moisture content,intestinal propulsion rate, 5-HT content, Chao1 index and Shannon index were increased significantly, while GABA content and Simpson index were decreased significantly (P<0.05). The intestinal flora of rats in the Modified shaoyao gancao decoction group could be classified as the same as the blank group, but was far from the model group; the relative abundances of Desulfobacterota, Firmicutes and Bacteroidota in this group showed a tendency of pull back, but the differences were not statistically significant compared to model group (P>0.05). Desulfobacterota was an intergroup differential factor (P<0.05). The content of GABA was negatively correlated with the relative abundance of Bacteroidota, Cyanobacteria, Patescibacteria and Actinobacteriota (P<0.05). The content of 5-HT was positively correlated with the relative abundance of Campilobacterota (P<0.05). CONCLUSIONS Modified shaoyao gancao decoction can improve the fecal properties and intestinal motility of STC rats. Its mechanism may be related to improving intestinal flora and then affecting the contents of GABA and 5-HT in intestinal contents. In addition, the contents of GABA and 5-HT may be significantly correlated with the relative abundance of specific bacterial phyla such as Bacteroidota and Campilobacterota.

Result Analysis
Print
Save
E-mail