1.Glutamate and its ionotropic receptor agonists inhibit the response to acute hypoxia in carotid body of rats.
Acta Physiologica Sinica 2023;75(4):537-543
The purpose of this study was to investigate the effect of glutamate and its ionotropic receptor agonists on the response to acute hypoxia in rat carotid body in vitro. Briefly, after SD rats were anesthetized and decapitated, the bilateral carotid bifurcations were rapidly isolated. Then bifurcation was placed into a recording chamber perfused with 95% O2-5% CO2 saturated Kreb's solution. The carotid body-sinus nerve complex was dissected, and the carotid sinus nerve discharge was recorded using a suction electrode. To detect the response of carotid body to acute hypoxia, the chamber was perfused with 5% O2-5% CO2-90% N2 saturated Kreb's solution for a period of 100 s at an interval of 15 min. To observe the effect of glutamate, ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor agonist AMPA or N-methyl-D-aspartate (NMDA) receptor agonist NMDA on the response to acute hypoxia in rat carotid body, the chamber was perfused with 5% O2-5% CO2-90% N2 saturated Kreb's solution containing the corresponding reagent. The results showed that glutamate (20 μmol/L), AMPA (5 μmol/L) or NMDA (10 μmol/L) inhibited the acute hypoxia-induced enhancement of carotid sinus nerve activity, and these inhibitory effects were dose-dependent. In summary, the activation of glutamate ionotropic receptors appears to exert an inhibitory effect on the response to acute hypoxia in carotid body of rats.
Rats
;
Animals
;
Glutamic Acid/pharmacology*
;
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology*
;
N-Methylaspartate/pharmacology*
;
Carotid Body
;
Rats, Sprague-Dawley
;
Carbon Dioxide
;
Receptors, N-Methyl-D-Aspartate
;
Receptors, AMPA
;
Hypoxia
2.Pharmacological Dissection of Intrinsic Optical Signal Reveals a Functional Coupling between Synaptic Activity and Astrocytic Volume Transient
Junsung WOO ; Young Eun HAN ; Wuhyun KOH ; Joungha WON ; Min Gu PARK ; Heeyoung AN ; C Justin LEE
Experimental Neurobiology 2019;28(1):30-42
The neuronal activity-dependent change in the manner in which light is absorbed or scattered in brain tissue is called the intrinsic optical signal (IOS), and provides label-free, minimally invasive, and high spatial (~100 µm) resolution imaging for visualizing neuronal activity patterns. IOS imaging in isolated brain slices measured at an infrared wavelength (>700 nm) has recently been attributed to the changes in light scattering and transmittance due to aquaporin-4 (AQP4)-dependent astrocytic swelling. The complexity of functional interactions between neurons and astrocytes, however, has prevented the elucidation of the series of molecular mechanisms leading to the generation of IOS. Here, we pharmacologically dissected the IOS in the acutely prepared brain slices of the stratum radiatum of the hippocampus, induced by 1 s/20 Hz electrical stimulation of Schaffer-collateral pathway with simultaneous measurement of the activity of the neuronal population by field potential recordings. We found that 55% of IOSs peak upon stimulation and originate from postsynaptic AMPA and NMDA receptors. The remaining originated from presynaptic action potentials and vesicle fusion. Mechanistically, the elevated extracellular glutamate and K⁺ during synaptic transmission were taken up by astrocytes via a glutamate transporter and quinine-sensitive K2P channel, followed by an influx of water via AQP-4. We also found that the decay of IOS is mediated by the DCPIB- and NPPB-sensitive anion channels in astrocytes. Altogether, our results demonstrate that the functional coupling between synaptic activity and astrocytic transient volume change during excitatory synaptic transmission is the major source of IOS.
Action Potentials
;
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
;
Amino Acid Transport System X-AG
;
Astrocytes
;
Brain
;
Electric Stimulation
;
Glutamic Acid
;
Hippocampus
;
Jupiter
;
Neurons
;
Receptors, N-Methyl-D-Aspartate
;
Synaptic Transmission
;
Water
3.Dual control of the vestibulosympathetic reflex following hypotension in rats.
Sang Eon PARK ; Yuan Zhe JIN ; Byung Rim PARK
The Korean Journal of Physiology and Pharmacology 2017;21(6):675-686
Orthostatic hypotension (OH) is associated with symptoms including headache, dizziness, and syncope. The incidence of OH increases with age. Attenuation of the vestibulosympathetic reflex (VSR) is also associated with an increased incidence of OH. In order to understand the pathophysiology of OH, we investigated the physiological characteristics of the VSR in the disorder. We applied sodium nitroprusside (SNP) to conscious rats with sinoaortic denervation in order to induce hypotension. Expression of pERK in the intermediolateral cell column (IMC) of the T4~7 thoracic spinal regions, blood epinephrine levels, and blood pressure were evaluated following the administration of glutamate and/or SNP. SNP-induced hypotension led to increased pERK expression in the medial vestibular nucleus (MVN), rostral ventrolateral medullary nucleus (RVLM) and the IMC, as well as increased blood epinephrine levels. We co-administered either a glutamate receptor agonist or a glutamate receptor antagonist to the MVN or the RVLM. The administration of the glutamate receptor agonists, AMPA or NMDA, to the MVN or RVLM led to elevated blood pressure, increased pERK expression in the IMC, and increased blood epinephrine levels. Administration of the glutamate receptor antagonists, CNQX or MK801, to the MVN or RVLM attenuated the increased pERK expression and blood epinephrine levels caused by SNP-induced hypotension. These results suggest that two components of the pathway which maintains blood pressure are involved in the VSR induced by SNP. These are the neurogenic control of blood pressure via the RVLM and the humoral control of blood pressure via epinephrine release from the adrenal medulla.
6-Cyano-7-nitroquinoxaline-2,3-dione
;
Adrenal Medulla
;
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
;
Animals
;
Blood Pressure
;
Denervation
;
Dizocilpine Maleate
;
Dizziness
;
Epinephrine
;
Excitatory Amino Acid Antagonists
;
Glutamic Acid
;
Headache
;
Hypotension*
;
Hypotension, Orthostatic
;
Incidence
;
N-Methylaspartate
;
Nitroprusside
;
Rats*
;
Receptors, Glutamate
;
Reflex*
;
Spinal Cord Lateral Horn
;
Syncope
;
Vestibular Nuclei
4.Facilitation of AMPA receptor-mediated steady-state current by extrasynaptic NMDA receptors in supraoptic magnocellular neurosecretory cells.
Yoon Hyoung PAI ; Chae Seong LIM ; Kyung Ah PARK ; Hyun Sil CHO ; Gyu Seung LEE ; Yong Sup SHIN ; Hyun Woo KIM ; Byeong Hwa JEON ; Seok Hwa YOON ; Jin Bong PARK
The Korean Journal of Physiology and Pharmacology 2016;20(4):425-432
In addition to classical synaptic transmission, information is transmitted between cells via the activation of extrasynaptic receptors that generate persistent tonic current in the brain. While growing evidence supports the presence of tonic NMDA current (INMDA) generated by extrasynaptic NMDA receptors (eNMDARs), the functional significance of tonic I(NMDA) in various brain regions remains poorly understood. Here, we demonstrate that activation of eNMDARs that generate I(NMDA) facilitates the α-amino-3-hydroxy-5-methylisoxazole-4-proprionate receptor (AMPAR)-mediated steady-state current in supraoptic nucleus (SON) magnocellular neurosecretory cells (MNCs). In low-Mg2+ artificial cerebrospinal fluid (aCSF), glutamate induced an inward shift in I(holding) (I(GLU)) at a holding potential (V(holding)) of -70 mV which was partly blocked by an AMPAR antagonist, NBQX. NBQX-sensitive I(GLU) was observed even in normal aCSF at V(holding) of -40 mV or -20 mV. I(GLU) was completely abolished by pretreatment with an NMDAR blocker, AP5, under all tested conditions. AMPA induced a reproducible inward shift in I(holding) (I(AMPA)) in SON MNCs. Pretreatment with AP5 attenuated I(AMPA) amplitudes to ~60% of the control levels in low-Mg2+ aCSF, but not in normal aCSF at V(holding) of -70 mV. I(AMPA) attenuation by AP5 was also prominent in normal aCSF at depolarized holding potentials. Memantine, an eNMDAR blocker, mimicked the AP5-induced I(AMPA) attenuation in SON MNCs. Finally, chronic dehydration did not affect I(AMPA) attenuation by AP5 in the neurons. These results suggest that tonic I(NMDA), mediated by eNMDAR, facilitates AMPAR function, changing the postsynaptic response to its agonists in normal and osmotically challenged SON MNCs.
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid*
;
Brain
;
Cerebrospinal Fluid
;
Dehydration
;
Glutamic Acid
;
Memantine
;
N-Methylaspartate*
;
Neurons
;
Receptors, AMPA
;
Receptors, N-Methyl-D-Aspartate*
;
Supraoptic Nucleus
;
Synaptic Transmission
5.Repeated Neonatal Propofol Administration Induces Sex-Dependent Long-Term Impairments on Spatial and Recognition Memory in Rats.
Edson Luck T GONZALES ; Sung Min YANG ; Chang Soon CHOI ; Darine Froy N MABUNGA ; Hee Jin KIM ; Jae Hoon CHEONG ; Jong Hoon RYU ; Bon Nyeo KOO ; Chan Young SHIN
Biomolecules & Therapeutics 2015;23(3):251-260
Propofol is an anesthetic agent that gained wide use because of its fast induction of anesthesia and rapid recovery post-anesthesia. However, previous studies have reported immediate neurodegeneration and long-term impairment in spatial learning and memory from repeated neonatal propofol administration in animals. Yet, none of those studies has explored the sex-specific long-term physical changes and behavioral alterations such as social (sociability and social preference), emotional (anxiety), and other cognitive functions (spatial working, recognition, and avoidance memory) after neonatal propofol treatment. Seven-day-old Wistar-Kyoto (WKY) rats underwent repeated daily intraperitoneal injections of propofol or normal saline for 7 days. Starting fourth week of age and onwards, rats were subjected to behavior tests including open-field, elevated-plus-maze, Y-maze, 3-chamber social interaction, novel-object-recognition, passive-avoidance, and rotarod. Rats were sacrificed at 9 weeks and hippocampal protein expressions were analyzed by Western blot. Results revealed long-term body weight gain alterations in the growing rats and sex-specific impairments in spatial (female) and recognition (male) learning and memory paradigms. A markedly decreased expression of hippocampal NMDA receptor GluN1 subunit in female- and increased expression of AMPA GluR1 subunit protein expression in male rats were also found. Other aspects of behaviors such as locomotor activity and coordination, anxiety, sociability, social preference and avoidance learning and memory were not generally affected. These results suggest that neonatal repeated propofol administration disrupts normal growth and some aspects of neurodevelopment in rats in a sex-specific manner.
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
;
Anesthesia
;
Animals
;
Anxiety
;
Avoidance Learning
;
Blotting, Western
;
Body Weight
;
Humans
;
Injections, Intraperitoneal
;
Interpersonal Relations
;
Learning
;
Male
;
Memory*
;
Motor Activity
;
N-Methylaspartate
;
Propofol*
;
Rats*
;
Weight Gain
6.Low Non-NMDA Receptor Current Density as Possible Protection Mechanism from Neurotoxicity of Circulating Glutamate on Subfornical Organ Neurons in Rats.
Wonee CHONG ; Seong Nam KIM ; Seong Kyu HAN ; So Yeong LEE ; Pan Dong RYU
The Korean Journal of Physiology and Pharmacology 2015;19(2):177-181
The subfornical organ (SFO) is one of circumventricular organs characterized by the lack of a normal blood brain barrier. The SFO neurons are exposed to circulating glutamate (60~100 microM), which may cause excitotoxicity in the central nervous system. However, it remains unclear how SFO neurons are protected from excitotoxicity caused by circulating glutamate. In this study, we compared the glutamate-induced whole cell currents in SFO neurons to those in hippocampal CA1 neurons using the patch clamp technique in brain slice. Glutamate (100 microM) induced an inward current in both SFO and hippocampal CA1 neurons. The density of glutamate-induced current in SFO neurons was significantly smaller than that in hippocampal CA1 neurons (0.55 vs. 2.07 pA/pF, p<0.05). To further identify the subtype of the glutamate receptors involved, the whole cell currents induced by selective agonists were then compared. The current densities induced by AMPA (0.45 pA/pF) and kainate (0.83 pA/pF), non-NMDA glutamate receptor agonists in SFO neurons were also smaller than those in hippocampal CA1 neurons (2.44 pA/pF for AMPA, p<0.05; 2.34 pA/pF for kainate, p< 0.05). However, the current density by NMDA in SFO neurons was not significantly different from that of hippocampal CA1 neurons (1.58 vs. 1.47 pA/pF, p>0.05). These results demonstrate that glutamate-mediated action through non-NMDA glutamate receptors in SFO neurons is smaller than that of hippocampal CA1 neurons, suggesting a possible protection mechanism from excitotoxicity by circulating glutamate in SFO neurons.
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
;
Animals
;
Blood-Brain Barrier
;
Brain
;
Central Nervous System
;
Glutamic Acid*
;
Hippocampus
;
Kainic Acid
;
N-Methylaspartate
;
Neurons*
;
Rats*
;
Receptors, Glutamate
;
Subfornical Organ*
7.The Role of AMPA Receptors in Synaptic Plasticity by Drugs of Abuse.
Myung Ji KWAK ; Jeong Hoon KIM
Korean Journal of Psychopharmacology 2014;25(4):149-154
Dopamine has long time considered as the main player in drug addiction. However, growing body of literature strongly supports a role for glutamate in addiction. 2-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors, one of the ionotropic glutamate receptors, are known to be involved in different forms of synaptic plasticity, and behaviors such as learning and memory. As drug addiction is a chronic brain disease with characteristics of craving and relapse, it is often considered as a maladapted form of drug-induced long-term memory. Experimental evidence strongly indicates that AMPA receptor has an important role in the development of drug addiction. Studies with animal models of drug addiction, such as behavioral sensitization and drug self-administration, demonstrate that AMPA receptor-mediated synaptic plasticity may underlie the neuronal mechanisms for such important characteristics of addiction as drug craving.
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
;
Brain Diseases
;
Diethylpropion
;
Dopamine
;
Glutamic Acid
;
Learning
;
Memory
;
Memory, Long-Term
;
Models, Animal
;
Neurons
;
Nucleus Accumbens
;
Plastics*
;
Receptors, AMPA*
;
Receptors, Ionotropic Glutamate
;
Recurrence
;
Street Drugs*
;
Substance-Related Disorders
8.A preliminary experimental study on the cardiac toxicity of glutamate and the role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor in rats.
Yan LIU ; Lan ZHOU ; Hai-Fei XU ; Li YAN ; Fan DING ; Wei HAO ; Ji-Min CAO ; Xue GAO
Chinese Medical Journal 2013;126(7):1323-1332
BACKGROUNDMonosodium L-glutamate (MSG) is a food flavour enhancer and its potential harmfulness to the heart remains controversial. We investigated whether MSG could induce cardiac arrhythmias and apoptosis via the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor.
METHODSMyocardial infarction (MI) was created by ligating the coronary artery and ventricular arrhythmias were monitored by electrocardiogram in the rat in vivo. Neonatal rat cardiomyocytes were isolated and cultured. Cell viability was estimated by 3-(4,5)-dimethylthiahiazo(-z-yl)-3,5-di-phenytetrazoliumromide (MTT) assay. Calcium mobilization was monitored by confocal microscopy. Cardiomyocyte apoptosis was evaluated by acridine orange staining, flow cytometry, DNA laddering, reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting.
RESULTSMSG (i.v.) decreased the heart rate at 0.5 g/kg and serious bradycardia at 1.5 g/kg, but could not induce ventricular tachyarrhythmias in normal rats in vivo. In rats with acute MI in vivo, however, MSG (1.5 g/kg, i.v.) induced ventricular tachyarrhythmias and these arrhythmias could be prevented by blocking the AMPA and N-methyl-d-aspartate (NMDA) receptors. Selectively activating the AMPA or NMDA receptor induced ventricular tachyarrhythmias in MI rats. At the cellular level, AMPA induced calcium mobilization, oxidative stress, mitochondrial dysfunction and apoptosis in cultured cardiomyocytes, especially when the AMPA receptor desensitization were blocked by cyclothiazide. The above toxic cellular effects of AMPA were abolished by AMPA receptor blockade or by H2O2 scavengers.
CONCLUSIONSMSG induces bradycardia in normal rats, but triggers lethal tachyarrhythmias in myocardial infarcted rats probably by hindering AMPA receptors. AMPA receptor overstimulation also induces cardiomyocyte apoptosis, which may facilitate arrhythmia.
Animals ; Apoptosis ; drug effects ; Arrhythmias, Cardiac ; chemically induced ; Calcium ; metabolism ; Cell Survival ; drug effects ; Cells, Cultured ; DNA Fragmentation ; drug effects ; Glutamic Acid ; toxicity ; Male ; Microscopy, Confocal ; Myocardial Infarction ; chemically induced ; Rats ; Rats, Wistar ; Receptors, AMPA ; genetics ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Sodium Glutamate ; toxicity ; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid ; toxicity
9.Psychiatric Implication for the Regulation of AMPA Receptor.
Journal of the Korean Society of Biological Psychiatry 2013;20(1):1-5
Glutamate receptors are important components of synaptic transmission in the nervous system. Especially, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors mediate most abundant excitatory synaptic transmission in the brain. There is elaborate mechanism of regulation of AMPA receptors including protein synthesis/degradation, intracellular trafficking, exocytosis/endocytosis and protein modification. In recent studies, it is revealed that functional dysregulation of AMPA receptors are related to major psychiatric disorders. In this review, we describe the structure and function of AMPA receptors in the synapse. We will introduce three steps of mechanism involving trafficking of AMPA receptors to neuronal membrane, lateral diffusion into synapses and synaptic retention by membrane proteins and postsynaptic scaffold proteins. Lastly, we will describe recent studies showing that regulation of AMPA receptors is important pathophysiological mechanism in psychiatric disorders.
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
;
Brain
;
Diethylpropion
;
Diffusion
;
Membrane Proteins
;
Membranes
;
Nervous System
;
Neurons
;
Propionates
;
Proteins
;
Receptors, AMPA
;
Receptors, Glutamate
;
Retention (Psychology)
;
Synapses
;
Synaptic Transmission
10.Long-Term Potentiation of Excitatory Synaptic Strength in Spinothalamic Tract Neurons of the Rat Spinal Cord.
The Korean Journal of Physiology and Pharmacology 2013;17(6):553-558
Spinal dorsal horn nociceptive neurons have been shown to undergo long-term synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Here, we focused on the spinothalamic tract (STT) neurons that are the main nociceptive neurons projecting from the spinal cord to the thalamus. Optical technique using fluorescent dye has made it possible to identify the STT neurons in the spinal cord. Evoked fast mono-synaptic, excitatory postsynaptic currents (eEPSCs) were measured in the STT neurons. Time-based tetanic stimulation (TBS) was employed to induce long-term potentiation (LTP) in the STT neurons. Coincident stimulation of both pre- and postsynaptic neurons using TBS showed immediate and persistent increase in AMPA receptor-mediated EPSCs. LTP can also be induced by postsynaptic spiking together with pharmacological stimulation using chemical NMDA. TBS-induced LTP observed in STT neurons was blocked by internal BAPTA, or Ni2+, a T-type VOCC blocker. However, LTP was intact in the presence of L-type VOCC blocker. These results suggest that long-term plastic change of STT neurons requires NMDA receptor activation and postsynaptic calcium but is differentially sensitive to T-type VOCCs.
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
;
Animals
;
Calcium
;
Depression
;
Egtazic Acid
;
Excitatory Postsynaptic Potentials
;
Horns
;
Long-Term Potentiation*
;
N-Methylaspartate
;
Neurons*
;
Nociceptors
;
Plastics
;
Rats*
;
Spinal Cord*
;
Spinothalamic Tracts*
;
Thalamus

Result Analysis
Print
Save
E-mail