1.Circadian effects of ionizing radiation on reproductive function and clock genes expression in male mouse.
Fenju QIN ; Ningang LIU ; Jing NIE ; Tao SHEN ; Yingjie XU ; Shuxian PAN ; Hailong PEI ; Guangming ZHOU
Environmental Health and Preventive Medicine 2021;26(1):103-103
BACKGROUND:
Exposure to the ionizing radiation (IR) encountered outside the magnetic field of the Earth poses a persistent threat to the reproductive functions of astronauts. The potential effects of space IR on the circadian rhythms of male reproductive functions have not been well characterized so far.
METHODS:
Here, we investigated the circadian effects of IR exposure (3 Gy X-rays) on reproductive functional markers in mouse testicular tissue and epididymis at regular intervals over a 24-h day. For each animal, epididymis was tested for sperm motility, and the testis tissue was used for daily sperm production (DSP), testosterone levels, and activities of testicular enzymes (glucose-6-phosphate dehydrogenase (G6PDH), sorbitol dehydrogenase (SDH), lactic dehydrogenase (LDH), and acid phosphatase (ACP)), and the clock genes mRNA expression such as Clock, Bmal1, Ror-α, Ror-β, or Ror-γ.
RESULTS:
Mice exposed to IR exhibited a disruption in circadian rhythms of reproductive markers, as indicated by decreased sperm motility, increased daily sperm production (DSP), and reduced activities of testis enzymes such as G6PDH, SDH, LDH, and ACP. Moreover, IR exposure also decreased mRNA expression of five clock genes (Clock, Bmal1, Ror-α, Ror-β, or Ror-γ) in testis, with alteration in the rhythm parameters.
CONCLUSION
These findings suggested potential health effects of IR exposure on reproductive functions of male astronauts, in terms of both the daily overall level as well as the circadian rhythmicity.
ARNTL Transcription Factors/genetics*
;
Acid Phosphatase
;
Animals
;
CLOCK Proteins/genetics*
;
Circadian Rhythm/radiation effects*
;
Epididymis/radiation effects*
;
Gene Expression/radiation effects*
;
Genitalia, Male/radiation effects*
;
Glucosephosphate Dehydrogenase
;
L-Iditol 2-Dehydrogenase
;
L-Lactate Dehydrogenase
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Models, Animal
;
Nuclear Receptor Subfamily 1, Group F, Member 1/genetics*
;
Nuclear Receptor Subfamily 1, Group F, Member 2/genetics*
;
Nuclear Receptor Subfamily 1, Group F, Member 3/genetics*
;
RNA, Messenger/genetics*
;
Radiation Exposure
;
Radiation, Ionizing
;
Reproductive Physiological Phenomena/radiation effects*
;
Sperm Motility/radiation effects*
;
Spermatozoa/radiation effects*
;
Testis/radiation effects*
2.Humanin suppresses receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation via AMP-activated protein kinase activation
Namju KANG ; Ki Woo KIM ; Dong Min SHIN
The Korean Journal of Physiology and Pharmacology 2019;23(5):411-417
Humanin (HN) is a mitochondrial peptide that exhibits cytoprotective actions against various stresses and diseases. HN has been shown to induce the phosphorylation of AMP-activated protein kinase (AMPK), which is a negative regulator of receptor activator of nuclear factor-κB ligand (RANKL). However, the role of HN in osteoclastogenesis or other skeletal disorders remains unknown. Here, we examined whether HN regulates osteoclastogenesis via AMPK activation using bone marrow-derived macrophage (BMM) cultures. Our results show that HN inhibited RANKL-induced osteoclast formation and reduced the expression of genes involved in osteoclastogenesis, including nuclear factor of activated T-cells cytoplasmic 1, osteoclast-associated receptor, cathepsin K, and tartrate-resistant acid phosphatase. Moreover, HN increased the levels of phosphorylated AMPK protein; compound C, an AMPK inhibitor, recovered HN-induced osteoclast differentiation. In addition, we found that HN significantly decreased the levels of RANKL-induced reactive oxygen species in BMMs. Therefore, these results indicate that HN plays an important role in osteoclastogenesis and may function as an inhibitor of bone disorders via AMPK activation.
Acid Phosphatase
;
AMP-Activated Protein Kinases
;
Cathepsin K
;
Cytoplasm
;
Macrophages
;
Osteoclasts
;
Phosphorylation
;
Reactive Oxygen Species
;
T-Lymphocytes
3.Pentamidine Inhibits Titanium Particle-Induced Osteolysis In Vivo and Receptor Activator of Nuclear Factor-κB Ligand-Mediated Osteoclast Differentiation In Vitro
Hye Jung IHN ; Kiryeong KIM ; Hye Sung CHO ; Eui Kyun PARK
Tissue Engineering and Regenerative Medicine 2019;16(3):265-273
BACKGROUND: Wear debris-induced osteolysis leads to periprosthetic loosening and subsequent prosthetic failure. Since excessive osteoclast formation is closely implicated in periprosthetic osteolysis, identification of agents to suppress osteoclast formation and/or function is crucial for the treatment and prevention of wear particle-induced bone destruction. In this study, we examined the potential effect of pentamidine treatment on titanium (Ti) particle-induced osteolysis, and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. METHODS: The effect of pentamidine treatment on bone destruction was examined in Ti particle-induced osteolysis mouse model. Ti particles were implanted onto mouse calvaria, and vehicle or pentamidine was administered for 10 days. Then, calvarial bone tissue was analyzed using micro-computed tomography and histology. We performed in vitro osteoclastogenesis assay using bone marrow-derived macrophages (BMMs) to determine the effect of pentamidine on osteoclast formation. BMMs were treated with 20 ng/mL RANKL and 10 ng/mL macrophage colony-stimulating factor in the presence or absence of pentamidine. Osteoclast differentiation was determined by tartrate-resistant acid phosphatase staining, real-time polymerase chain reaction, and immunofluorescence staining. RESULTS: Pentamidine administration decreased Ti particle-induced osteoclast formation significantly and prevented bone destruction compared to the Ti particle group in vivo. Pentamidine also suppressed RANKL-induced osteoclast differentiation and actin ring formation markedly, and inhibited the expression of nuclear factor of activated T cell c1 and osteoclast-specific genes in vitro. Additionally, pentamidine also attenuated RANKL-mediated phosphorylation of IκBα in BMMs. CONCLUSION: These results indicate that pentamidine is effective in inhibiting osteoclast formation and significantly attenuates wear debris-induced bone loss in mice.
Acid Phosphatase
;
Actins
;
Animals
;
Bone and Bones
;
Fluorescent Antibody Technique
;
In Vitro Techniques
;
Macrophage Colony-Stimulating Factor
;
Macrophages
;
Mice
;
Osteoclasts
;
Osteolysis
;
Pentamidine
;
Phosphorylation
;
Real-Time Polymerase Chain Reaction
;
Skull
;
Titanium
4.Vitamin D Dependent Rickets Type 1A Caused by CYP27B1 Mutation
Na Ry BAK ; Eun Song SONG ; Eun Mi YANG ; Chan Jong KIM
Childhood Kidney Diseases 2019;23(2):111-115
Vitamin D dependent rickets type 1A (VDDR1A) is an autosomal recessive disorder caused by mutations in CYP27B1 . Clinical findings are growth retardation, hypotonia, muscle weakness, hypocalcemic seizures, and radiological features of rickets. We aimed to present the VDDR1A case with a genetic study of CYP27B1 . The 14-month-old boy was admitted to the hospital due to a seizure. Serum calcium, phosphorus, alkaline phosphatase, parathyroid hormone (PTH), 25(OH) vitamin D, and 1,25(OH)2 vitamin D values were 5.1 mg/dL, 3.7 mg/dL, 705 IU/L, 429 pg/mL, 24.9 ng/mL, and 8.8 pg/mL, respectively. Radiological study showed cupping and fraying of the distal ulna and radius. The molecular genetic study revealed that the patient had a compound heterozygous mutation, Phe443Profs*24 and c.589+1G>A, in CYP27B1 . Genetic analysis of the family members presented that the mother was heterozygous for the mutation c.589+1G>A, and that the father was heterozygous for Phe443Profs*24. The patient was treated with calcium lactate and calcitriol. Until now, six Korean patients with VDDR1A have been studied. Including this case, Korean patients with VDDR1A were found to have only three different mutations in 14 alleles, indicating that the mutation in the CYP27B1 gene is homogeneous in the Korean population.
25-Hydroxyvitamin D3 1-alpha-Hydroxylase
;
Alkaline Phosphatase
;
Alleles
;
Calcitriol
;
Calcium
;
Fathers
;
Humans
;
Infant
;
Lactic Acid
;
Male
;
Molecular Biology
;
Mothers
;
Muscle Hypotonia
;
Parathyroid Hormone
;
Phosphorus
;
Radius
;
Rickets
;
Seizures
;
Ulna
;
Vitamin D
;
Vitamins
5.Effect of minimally invasive anterior lateral approach for total hip arthroplasty on serum type I collagen propeptide, tartrate-resistant acid phosphatase 5b and hip joint function in patients with femoral neck fracture.
China Journal of Orthopaedics and Traumatology 2019;32(12):1117-1122
OBJECTIVE:
To analyze the level of serum N-terminal propeptide of type I precollagen (PINP) and tartrate resistant acid phosphatase 5b(TRACP-5b) in patients with femoral neck fracture(FNF) after minimally invasive anterior lateral approach with total hip arthroplasty and the effects of hip function.
METHODS:
From September 2016 to May 2017, 98 cases of femoral neck fracture were divided into control group and observation group, 49 cases in each group. There were 49 patients in control group, including 30 males and 19 females, ranging in age from 63 to 72 years old, who underwent minimally invasive anterolateral total hip arthroplasty. There were 49 patients in observation group, including 29 males and 20 females, ranging in age from 62 to 73 years old, who underwent minimally invasive anterolateral total hip arthroplasty. The perioperative conditions(operation time, bleeding volume, incision length, hospitalization time), bone metabolism indexes including PINP, TRACP-5b, fibroblast growth factor(FGF), bone gla-protein(BGP), propetide carboxy-terminal procollagen (PICP), bone-specific alkaline phosphatase(BAP), and pain mediators such as prostaglandin E2 (PGE2) and 5-hydroxytrytamine (5-HT) levels were compared between the two groups. The hip joint function and complications were evaluated.
RESULTS:
The operation time of the observation group was longer than that of the control group(<0.05); there was no significant difference in bleeding volume, incision length and hospitalization time between two groups(>0.05). PINP, fibroblast growth factor, BGP, PICP and BAP in observation group were higher than those in control group 1 month after operation, and TRACP-5b was lower than those in control group(<0.05); PGE2 and 5-HT in observation group 1 month after operation were lower than those before operation, and lower than those in control group(<0.05). The excellent and good rate of hip function in observation group was higher than that in control group (<0.05), and the incidence of complications was not significantly different from that in the control group (>0.05).
CONCLUSIONS
Minimally invasive anterolateral approach total hip arthroplasty is safe and reliable, and can improve hip function, improve bone metabolism, promote fracture healing, alleviate pain in patients with femoral neck fracture, which is worthy of promotion.
Aged
;
Arthroplasty, Replacement, Hip
;
Collagen Type I
;
Female
;
Femoral Neck Fractures
;
surgery
;
Hip Joint
;
Humans
;
Male
;
Middle Aged
;
Minimally Invasive Surgical Procedures
;
Tartrate-Resistant Acid Phosphatase
;
Treatment Outcome
6.Preventive effect and mechanism of puerarin on rat models of disuse osteoporosis.
Kai LI ; Rong QIN ; Jia-le SHAO ; Yu-Hai GAO ; Jian ZHOU ; Ke-Ming CHEN
China Journal of Chinese Materia Medica 2019;44(3):535-540
To investigate the preventive effect and possible mechanism of puerarin(Pur) in rat model of disuse osteoporosis(DOP),thirty healthy Wistar female rats of 2 months old were randomly divided into control group(Control), hindlimb suspension group(HLS), and puerarin group(HLS+Pur) in hindlimb suspension, with 10 rats in each group. A disuse osteoporosis model was established by tail suspension method, and 15.4 mg·kg~(-1) puerarin suspension was administered to HLS+Pur group every day, and the same volume of distilled water was administered to Control group and HLS group respectively. After 28 days, the rats were sacrificed by abdominal aorta blood collection, the main organs of the rats were removed, and the bone tissues of the rats were dissected. The organ index of the rats was calculated and the histopathology of the organs was observed under microscope. Bone mineral density test and bone biomechanical experiment were performed. Bone histomorphometry results were observed after bone tissue sectioning, and serum biochemical markers of bone metabolism were determined. There was no significant difference in organ index between the groups. There was no obvious abnormality in the pathological examination of the organs. The results of bone mineral density showed that puerarin could significantly increase the bone density of the tibia and vertebrae caused by hindlimb suspension. The mechanical parameters experiments showed that puerarin could effectively increase the maximum load and elastic modulus of the tibia and vertebrae. Fluorescence labeling showed that the fluorosis interval increased and the bone formation increased during puerarin treatment. The VG staining results showed that compared with the HLS group, in the puerarin group, the number of trabecular bone increased, the thickness of the trabecular bone became thicker, and the bone separation became smaller, which greatly improved the bone microstructure after hindlinb suspension. In addition, serum biochemical indicators showed that puerarin could promote bone formation index bone calcium. The content of osteocalcin(OC) increased and inhibited the formation of tartrate-resistant acid phosphatase 5 b(TRACP 5 b). Puerarin has a preventive effect in the rat model of disuse osteoporosis and its effect is good, and its mechanism may be related to promoting bone formation and inhibiting bone resorption.
Animals
;
Bone Density
;
Female
;
Isoflavones
;
pharmacology
;
Osteocalcin
;
metabolism
;
Osteoporosis
;
drug therapy
;
Rats
;
Rats, Wistar
;
Tartrate-Resistant Acid Phosphatase
;
metabolism
7.Effects of the cathepsin K inhibitor with mineral trioxide aggregate cements on osteoclastic activity
Hee Sun KIM ; Soojung KIM ; Hyunjung KO ; Minju SONG ; Miri KIM
Restorative Dentistry & Endodontics 2019;44(2):e17-
OBJECTIVES: Root resorption is an unexpected complication after replantation procedures. Combining anti-osteoclastic medicaments with retrograde root filling materials may avert this resorptive activity. The purpose of this study was to assess effects of a cathepsin K inhibitor with calcium silicate-based cements on osteoclastic activity. METHODS: MC3T3-E1 cells were cultured for biocompatibility analyses. RAW 264.7 cells were cultured in the presence of the receptor activator of nuclear factor-kappa B and lipopolysaccharide, followed by treatment with Biodentine (BIOD) or ProRoot MTA with or without medicaments (Odanacatib [ODN], a cathepsin inhibitor and alendronate, a bisphosphonate). After drug treatment, the cell counting kit-8 assay and Alizarin red staining were performed to evaluate biocompatibility in MC3T3-E1 cells. Reverse-transcription polymerase chain reaction, tartrate-resistant acid phosphatase (TRAP) staining and enzyme-linked immunosorbent assays were performed in RAW 264.7 cells to determine the expression levels of inflammatory cytokines, interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2). Data were analyzed by one-way analysis of variance and Tukey's post hoc test (p < 0.05). RESULTS: Biocompatibility results showed that there were no significant differences among any of the groups. RAW 264.7 cells treated with BIOD and ODN showed the lowest levels of TNF-α and PGE2. Treatments with BIOD + ODN were more potent suppressors of inflammatory cytokine expression (p < 0.05). CONCLUSION: The cathepsin K inhibitor with calcium silicate-based cement inhibits osteoclastic activity. This may have clinical application in preventing inflammatory root resorption in replanted teeth.
Acid Phosphatase
;
Alendronate
;
Calcium
;
Cathepsin K
;
Cathepsins
;
Cell Count
;
Cytokines
;
Dinoprostone
;
Enzyme-Linked Immunosorbent Assay
;
Interleukin-6
;
Interleukins
;
Miners
;
Necrosis
;
Osteoblasts
;
Osteoclasts
;
Pemetrexed
;
Polymerase Chain Reaction
;
RAW 264.7 Cells
;
Receptor Activator of Nuclear Factor-kappa B
;
Replantation
;
Root Resorption
;
Tooth
8.Piperlongumine suppressed osteoclastogenesis in RAW264.7 macrophages
Sun Mi JIN ; Hae Mi KANG ; Dan Bi PARK ; Su Bin YU ; In Ryoung KIM ; Bong Soo PARK
International Journal of Oral Biology 2019;44(3):89-95
Piperlongumine (PL) is a natural product found in long pepper (Piper longum). The pharmacological effects of PL are well known, and it has been used for pain, hepatoprotection, and asthma in Oriental medicine. No studies have examined the effects of PL on bone tissue or bone-related diseases, including osteoporosis. The current study investigated for the first time the inhibitory effects of PL on osteoclast differentiation, bone resorption, and osteoclastogenesis-related factors in RAW264.7 macrophages stimulated by the receptor activator for nuclear factor-κB ligand (RANKL). Cytotoxicity was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and osteoclast differentiation and bone resorption were confirmed by tartrate-resistant acid phosphatase (TRAP) staining and pit formation analysis. Osteoclast differentiation factors were confirmed by western blotting. PL exhibited toxicity in RAW264.7 macrophages, inhibiting osteoclast formation and bone resorption, in addition to inhibiting the expression of osteoclastogenesis-related factors, such as tumor necrosis factor receptor-associated factor 6 (TRAF6), c-Fos, and NFATc1, in RANKL-stimulated RAW264.7 macrophages. These findings suggest that PL is suitable for the treatment of osteoporosis, and it serves as a potential therapeutic agent for various bone diseases.
Acid Phosphatase
;
Asthma
;
Blotting, Western
;
Bone and Bones
;
Bone Diseases
;
Bone Resorption
;
Macrophages
;
Medicine, East Asian Traditional
;
Osteoclasts
;
Osteoporosis
;
Piper
;
RANK Ligand
;
Tumor Necrosis Factor-alpha
9.Tetrabromobisphenol A Promotes the Osteoclastogenesis of RAW264.7 Cells Induced by Receptor Activator of NF-kappa B Ligand In Vitro
So Young PARK ; Eun Mi CHOI ; Kwang Sik SUH ; Hyun Sook KIM ; Sang Ouk CHIN ; Sang Youl RHEE ; Deog Yoon KIM ; Seungjoon OH ; Suk CHON
Journal of Korean Medical Science 2019;34(41):e267-
BACKGROUND: Tetrabromobisphenol A (TBBPA), one of the most widely used brominated flame-retardants, is a representative persistent organic pollutants group. Studies on TBBPA toxicity have been conducted using various target cells; however, few studies have investigated TBBPA toxicity in bone cells. Therefore, this study investigated the in vitro effects of TBBPA on osteoclasts, a cell type involved in bone metabolism. METHODS: RAW264.7 cells were cultured in medium containing 50 ng/mL receptor activator of nuclear factor kappa B ligand (RANKL) and varying concentrations of TBBPA. To evaluate the effects of TBBPA on the differentiation and function of osteoclasts, osteoclast-specific gene expression, tartrate-resistant acid phosphatase (TRAP) activity, bone resorbing activity, mitochondrial membrane potential (MMP) and mitochondrial superoxide were measured. RESULTS: The presence of 20 μM TBBPA significantly increased TRAP activity in RANKL-stimulated RAW264.7 cells, the bone resorbing activity of osteoclasts, and the gene expression of Akt2, nuclear factor of activated T-cells cytoplasmic 1, and chloride channel voltage-sensitive 7. However, TBBPA treatment caused no change in the expression of carbonic anhydrase II, cathepsin K, osteopetrosis-associated transmembrane protein 1, Src, extracellular signal-related kinase, GAB2, c-Fos, or matrix metalloproteinase 9. Furthermore, 20 μM TBBPA caused a significant decrease in MMP and a significant increase in mitochondrial superoxide production. CONCLUSION: This study suggests that TBBPA promotes osteoclast differentiation and activity. The mechanism of TBBPA-stimulated osteoclastogenesis might include increased expression of several genes involved in osteoclast differentiation and reactive oxygen species production.
Acid Phosphatase
;
Carbonic Anhydrase II
;
Cathepsin K
;
Chloride Channels
;
Cytoplasm
;
Gene Expression
;
In Vitro Techniques
;
Matrix Metalloproteinase 9
;
Membrane Potential, Mitochondrial
;
Metabolism
;
Osteoclasts
;
Phosphotransferases
;
RANK Ligand
;
Reactive Oxygen Species
;
Receptor Activator of Nuclear Factor-kappa B
;
Superoxides
;
T-Lymphocytes
10.Telmisartan Inhibits Nitric Oxide Production and Vessel Relaxation via Protein Phosphatase 2A-mediated Endothelial NO Synthase-Ser¹¹⁷⁹ Dephosphorylation
Journal of Korean Medical Science 2019;34(42):e266-
BACKGROUND: Apart from its blood pressure-lowering effect by blocking the renin-angiotensin-aldosterone system, telmisartan, an angiotensin II type 1 receptor blocker (ARB), exhibits various ancillary effects including cardiovascular protective effects in vitro. Nonetheless, the protective effects of telmisartan in cerebrocardiovascular diseases are somewhat variable in large-scale clinical trials. Dysregulation of endothelial nitric oxide (NO) synthase (eNOS)-derived NO contributes to the developments of various vascular diseases. Nevertheless, the direct effects of telmisartan on endothelial functions including NO production and vessel relaxation, and its action mechanism have not been fully elucidated. Here, we investigated the mechanism by which telmisartan regulates NO production and vessel relaxation in vitro and in vivo. METHODS: We measured nitrite levels in culture medium and mouse serum, and performed inhibitor studies and western blot analyses using bovine aortic endothelial cells (BAECs) and a hyperglycemic mouse model. To assess vessel reactivity, we performed acetylcholine (ACh)-induced vessel relaxation assay on isolated rat aortas. RESULTS: Telmisartan decreased NO production in normoglycemic and hyperglycemic BAECs, which was accompanied by reduced phosphorylation of eNOS at Ser¹¹⁷⁹ (p-eNOS-Ser¹¹⁷⁹). Telmisartan increased the expression of protein phosphatase 2A catalytic subunit (PP2Ac) and co-treatment with okadaic acid completely restored telmisartan-inhibited NO production and p-eNOS-Ser¹¹⁷⁹ levels. Of the ARBs tested (including losartan and fimasartan), only telmisartan decreased NO production and p-eNOS-Ser¹¹⁷⁹ levels, and enhanced PP2Ac expression. Co-treatment with GW9662 had no effect on telmisartan-induced changes. In line with in vitro observations, telmisartan reduced serum nitrite and p-eNOS-Ser¹¹⁷⁹ levels, and increased PP2Ac expression in high fat diet-fed mice. Furthermore, telmisartan attenuated ACh-induced rat aorta relaxation. CONCLUSION: We demonstrated that telmisartan inhibited NO production and vessel relaxation at least in part by PP2A-mediated eNOS-Ser¹¹⁷⁹ dephosphorylation in a peroxisome proliferator-activated receptor γ-independent manner. These results may provide a mechanism that explains the inconsistent cerebrocardiovascular protective effects of telmisartan.
Acetylcholine
;
Animals
;
Aorta
;
Blotting, Western
;
Catalytic Domain
;
Endothelial Cells
;
In Vitro Techniques
;
Losartan
;
Mice
;
Mice, Obese
;
Nitric Oxide Synthase Type III
;
Nitric Oxide
;
Okadaic Acid
;
Peroxisomes
;
Phosphorylation
;
Protein Phosphatase 2
;
Rats
;
Receptor, Angiotensin, Type 1
;
Relaxation
;
Renin-Angiotensin System
;
Vascular Diseases

Result Analysis
Print
Save
E-mail