1.LIN28 coordinately promotes nucleolar/ribosomal functions and represses the 2C-like transcriptional program in pluripotent stem cells.
Zhen SUN ; Hua YU ; Jing ZHAO ; Tianyu TAN ; Hongru PAN ; Yuqing ZHU ; Lang CHEN ; Cheng ZHANG ; Li ZHANG ; Anhua LEI ; Yuyan XU ; Xianju BI ; Xin HUANG ; Bo GAO ; Longfei WANG ; Cristina CORREIA ; Ming CHEN ; Qiming SUN ; Yu FENG ; Li SHEN ; Hao WU ; Jianlong WANG ; Xiaohua SHEN ; George Q DALEY ; Hu LI ; Jin ZHANG
Protein & Cell 2022;13(7):490-512
LIN28 is an RNA binding protein with important roles in early embryo development, stem cell differentiation/reprogramming, tumorigenesis and metabolism. Previous studies have focused mainly on its role in the cytosol where it interacts with Let-7 microRNA precursors or mRNAs, and few have addressed LIN28's role within the nucleus. Here, we show that LIN28 displays dynamic temporal and spatial expression during murine embryo development. Maternal LIN28 expression drops upon exit from the 2-cell stage, and zygotic LIN28 protein is induced at the forming nucleolus during 4-cell to blastocyst stage development, to become dominantly expressed in the cytosol after implantation. In cultured pluripotent stem cells (PSCs), loss of LIN28 led to nucleolar stress and activation of a 2-cell/4-cell-like transcriptional program characterized by the expression of endogenous retrovirus genes. Mechanistically, LIN28 binds to small nucleolar RNAs and rRNA to maintain nucleolar integrity, and its loss leads to nucleolar phase separation defects, ribosomal stress and activation of P53 which in turn binds to and activates 2C transcription factor Dux. LIN28 also resides in a complex containing the nucleolar factor Nucleolin (NCL) and the transcriptional repressor TRIM28, and LIN28 loss leads to reduced occupancy of the NCL/TRIM28 complex on the Dux and rDNA loci, and thus de-repressed Dux and reduced rRNA expression. Lin28 knockout cells with nucleolar stress are more likely to assume a slowly cycling, translationally inert and anabolically inactive state, which is a part of previously unappreciated 2C-like transcriptional program. These findings elucidate novel roles for nucleolar LIN28 in PSCs, and a new mechanism linking 2C program and nucleolar functions in PSCs and early embryo development.
Animals
;
Cell Differentiation
;
Embryo, Mammalian/metabolism*
;
Embryonic Development
;
Mice
;
Pluripotent Stem Cells/metabolism*
;
RNA, Messenger/genetics*
;
RNA, Ribosomal
;
RNA-Binding Proteins/metabolism*
;
Transcription Factors/metabolism*
;
Zygote/metabolism*
2.Maternal heterozygous mutation in CHEK1 leads to mitotic arrest in human zygotes.
Beili CHEN ; Jianying GUO ; Ting WANG ; Qianhui LEE ; Jia MING ; Fangfang DING ; Haitao LI ; Zhiguo ZHANG ; Lin LI ; Yunxia CAO ; Jie NA
Protein & Cell 2022;13(2):148-154
3.Effective and precise adenine base editing in mouse zygotes.
Puping LIANG ; Hongwei SUN ; Xiya ZHANG ; Xiaowei XIE ; Jinran ZHANG ; Yaofu BAI ; Xueling OUYANG ; Shengyao ZHI ; Yuanyan XIONG ; Wenbin MA ; Dan LIU ; Junjiu HUANG ; Zhou SONGYANG
Protein & Cell 2018;9(9):808-813
Adenine
;
Animals
;
Gene Editing
;
Mice
;
Zygote
;
metabolism
4.Effective gene editing by high-fidelity base editor 2 in mouse zygotes.
Puping LIANG ; Hongwei SUN ; Ying SUN ; Xiya ZHANG ; Xiaowei XIE ; Jinran ZHANG ; Zhen ZHANG ; Yuxi CHEN ; Chenhui DING ; Yuanyan XIONG ; Wenbin MA ; Dan LIU ; Junjiu HUANG ; Zhou SONGYANG
Protein & Cell 2017;8(8):601-611
Targeted point mutagenesis through homologous recombination has been widely used in genetic studies and holds considerable promise for repairing disease-causing mutations in patients. However, problems such as mosaicism and low mutagenesis efficiency continue to pose challenges to clinical application of such approaches. Recently, a base editor (BE) system built on cytidine (C) deaminase and CRISPR/Cas9 technology was developed as an alternative method for targeted point mutagenesis in plant, yeast, and human cells. Base editors convert C in the deamination window to thymidine (T) efficiently, however, it remains unclear whether targeted base editing in mouse embryos is feasible. In this report, we generated a modified high-fidelity version of base editor 2 (HF2-BE2), and investigated its base editing efficacy in mouse embryos. We found that HF2-BE2 could convert C to T efficiently, with up to 100% biallelic mutation efficiency in mouse embryos. Unlike BE3, HF2-BE2 could convert C to T on both the target and non-target strand, expanding the editing scope of base editors. Surprisingly, we found HF2-BE2 could also deaminate C that was proximal to the gRNA-binding region. Taken together, our work demonstrates the feasibility of generating point mutations in mouse by base editing, and underscores the need to carefully optimize base editing systems in order to eliminate proximal-site deamination.
APOBEC-1 Deaminase
;
genetics
;
metabolism
;
Animals
;
Bacterial Proteins
;
genetics
;
metabolism
;
Base Sequence
;
CRISPR-Associated Protein 9
;
CRISPR-Cas Systems
;
Cytidine
;
genetics
;
metabolism
;
Embryo Transfer
;
Embryo, Mammalian
;
Endonucleases
;
genetics
;
metabolism
;
Gene Editing
;
methods
;
HEK293 Cells
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Mice
;
Mice, Inbred C57BL
;
Microinjections
;
Plasmids
;
chemistry
;
metabolism
;
Point Mutation
;
RNA, Guide
;
genetics
;
metabolism
;
Thymidine
;
genetics
;
metabolism
;
Zygote
;
growth & development
;
metabolism
;
transplantation
5.Pentoxifylline inhibits liver fibrosis via hedgehog signaling pathway.
Hui LI ; Juan HUA ; Chun-Xia GUO ; Wei-Xian WANG ; Bao-Ju WANG ; Dong-Liang YANG ; Ping WEI ; Yin-Ping LU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):372-376
Infection of schistosomiasis japonica may eventually lead to liver fibrosis, and no effective antifibrotic therapies are available but liver transplantation. Hedgehog (HH) signaling pathway has been involved in the process and is a promising target for treating liver fibrosis. This study aimed to explore the effects of pentoxifylline (PTX) on liver fibrosis induced by schistosoma japonicum infection by inhibiting the HH signaling pathway. Phorbol12-myristate13-acetate (PMA) was used to induce human acute mononuclear leukemia cells THP-1 to differentiate into macrophages. The THP-1-derived macrophages were stimulated by soluble egg antigen (SEA), and the culture supernatants were collected for detection of activation of macrophages. Cell Counting Kit-8 (CCK-8) was used to detect the cytotoxicity of the culture supernatant and PTX on the LX-2 cells. The LX-2 cells were administered with activated culture supernatant from macrophages and(or) PTX to detect the transforming growth factor-β gene expression. The mRNA expression of shh and gli-1, key parts in HH signaling pathway, was detected. The mRNA expression of shh and gli-1 was increased in LX-2 cells treated with activated macrophages-derived culture supernatant, suggesting HH signaling pathway may play a key role in the activation process of hepatic stellate cells (HSCs). The expression of these genes decreased in LX-2 cells co-cultured with both activated macrophages-derived culture supernatant and PTX, indicating PTX could suppress the activation process of HSCs. In conclusion, these data provide evidence that PTX prevents liver fibrogenesis in vitro by the suppression of HH signaling pathway.
Animals
;
Antigens, Helminth
;
isolation & purification
;
pharmacology
;
Cell Culture Techniques
;
Cell Differentiation
;
drug effects
;
Cell Line
;
Culture Media, Conditioned
;
chemistry
;
pharmacology
;
Gene Expression Regulation
;
Hedgehog Proteins
;
agonists
;
antagonists & inhibitors
;
genetics
;
immunology
;
Hepatic Stellate Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Liver Cirrhosis
;
metabolism
;
parasitology
;
prevention & control
;
Macrophage Activation
;
drug effects
;
Macrophages
;
cytology
;
drug effects
;
immunology
;
Models, Biological
;
Monocytes
;
cytology
;
drug effects
;
metabolism
;
Pentoxifylline
;
pharmacology
;
Phosphodiesterase Inhibitors
;
pharmacology
;
RNA, Messenger
;
genetics
;
immunology
;
Schistosoma japonicum
;
chemistry
;
Signal Transduction
;
Tetradecanoylphorbol Acetate
;
pharmacology
;
Zinc Finger Protein GLI1
;
genetics
;
immunology
;
Zygote
;
chemistry
6.The moral imperative to continue gene editing research on human embryos.
Julian SAVULESCU ; Jonathan PUGH ; Thomas DOUGLAS ; Christopher GYNGELL
Protein & Cell 2015;6(7):476-479
Aging
;
genetics
;
Embryo Research
;
ethics
;
Embryo, Mammalian
;
metabolism
;
Fertilization in Vitro
;
Humans
;
Morals
;
Preimplantation Diagnosis
;
RNA Editing
;
genetics
;
Zygote
;
metabolism
7.CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes.
Puping LIANG ; Yanwen XU ; Xiya ZHANG ; Chenhui DING ; Rui HUANG ; Zhen ZHANG ; Jie LV ; Xiaowei XIE ; Yuxi CHEN ; Yujing LI ; Ying SUN ; Yaofu BAI ; Zhou SONGYANG ; Wenbin MA ; Canquan ZHOU ; Junjiu HUANG
Protein & Cell 2015;6(5):363-372
Genome editing tools such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated system (Cas) have been widely used to modify genes in model systems including animal zygotes and human cells, and hold tremendous promise for both basic research and clinical applications. To date, a serious knowledge gap remains in our understanding of DNA repair mechanisms in human early embryos, and in the efficiency and potential off-target effects of using technologies such as CRISPR/Cas9 in human pre-implantation embryos. In this report, we used tripronuclear (3PN) zygotes to further investigate CRISPR/Cas9-mediated gene editing in human cells. We found that CRISPR/Cas9 could effectively cleave the endogenous β-globin gene (HBB). However, the efficiency of homologous recombination directed repair (HDR) of HBB was low and the edited embryos were mosaic. Off-target cleavage was also apparent in these 3PN zygotes as revealed by the T7E1 assay and whole-exome sequencing. Furthermore, the endogenous delta-globin gene (HBD), which is homologous to HBB, competed with exogenous donor oligos to act as the repair template, leading to untoward mutations. Our data also indicated that repair of the HBB locus in these embryos occurred preferentially through the non-crossover HDR pathway. Taken together, our work highlights the pressing need to further improve the fidelity and specificity of the CRISPR/Cas9 platform, a prerequisite for any clinical applications of CRSIPR/Cas9-mediated editing.
Blastocyst
;
CRISPR-Cas Systems
;
Hemoglobins, Abnormal
;
genetics
;
metabolism
;
Humans
;
Zygote
8.Molecules and mechanisms controlling the active DNA demethylation of the mammalian zygotic genome.
Jun-Yu MA ; Teng ZHANG ; Wei SHEN ; Heide SCHATTEN ; Qing Yuan SUN
Protein & Cell 2014;5(11):827-836
The active DNA demethylation in early embryos is essential for subsequent development. Although the zygotic genome is globally demethylated, the DNA methylation of imprinted regions, part of repeat sequences and some gamete-specific regions are maintained. Recent evidence has shown that multiple proteins and biological pathways participate in the regulation of active DNA demethylation, such as TET proteins, DNA repair pathways and DNA methyltransferases. Here we review the recent understanding regarding proteins associated with active DNA demethylation and the regulatory networks controlling the active DNA demethylation in early embryos.
Animals
;
DNA Methylation
;
Embryo, Mammalian
;
cytology
;
embryology
;
metabolism
;
Gene Expression Regulation, Developmental
;
Gene Regulatory Networks
;
genetics
;
Genome
;
genetics
;
Humans
;
Mice
;
Models, Genetic
;
Zygote
;
cytology
;
growth & development
;
metabolism
9.PKA-regulated phosphorylation status of S149 and S321 sites of CDC25B inhibits mitosis of fertilized mouse eggs.
Jian-Ying XIAO ; Chao LIU ; Xiao-Han SUN ; Bing-Zhi YU
Acta Physiologica Sinica 2012;64(1):33-40
To further test whether protein kinase A (PKA) can affect the mitotic cell cycle, one-cell stage mouse embryos at S phase (22 h after hCG injection) were incubated in M16 medium containing various concentrations of H-89, a PKA inhibitor. With increasing concentrations of H-89 (0-50 μmol/L), the G(2) phase of eggs was decreased and the cleavage rate was accelerated. A concentration of 40 μmol/L H-89 led to all of the mouse eggs entering the M phase of mitosis. Furthermore, to study the role of PKA in regulating the phosphorylation status of S149 and S321 sites of cell division cycle 25B (CDC25B) on one-cell stage fertilized mouse eggs, pBSK-CDC25B-WT, pBSK-CDC25B-S149A, pBSK-CDC25B-S321A and pBSK-CDC25B-S149A/S321A were transcribed into mRNAs in vitro, then mRNAs were microinjected into S phase of mouse fertilized eggs and cultured in M16 medium pretreated with H-89. Then, the cleavage of fertilized eggs, maturation promoting factor (MPF) activity and phosphorylation status of CDC2-Tyr15 were observed. In the presence of 40 μmol/L H-89, the cleavage rate of fertilized eggs in CDC25B-S/A-mRNAs and CDC25B-WT-mRNA injected groups was significantly higher than that in the control groups, and the peak of MPF activity appeared in the CDC25B-S/A-mRNAs and CDC25B-WT-mRNA injected groups earlier than that in the control groups. CDC2-Tyr15 phosphorylation state was consistent with MPF activity. In conclusion, the present study suggests that PKA regulates the early development of mouse embryos by phosphorylation of S149 and S321 of CDC25B, which plays an important role in the regulation of G(2)/M transition in the mitotic cell cycle of fertilized mouse eggs.
Animals
;
Cyclic AMP-Dependent Protein Kinases
;
genetics
;
physiology
;
Embryonic Development
;
physiology
;
Female
;
Male
;
Mice
;
Microinjections
;
Mitosis
;
drug effects
;
Phosphorylation
;
Serine
;
genetics
;
metabolism
;
Zygote
;
cytology
;
growth & development
;
cdc25 Phosphatases
;
genetics
;
metabolism
10.GammaH2AX-mediated repair of DNA damaged sperm in the zygote.
Wan-Min LIU ; Rong-Ju LIU ; Zhi-Ling LI
National Journal of Andrology 2010;16(4):349-353
Male germ cells are particularly susceptible to DNA damage by genotoxic agents during spermiogenesis and spermatozoal maturation, and meanwhile lack an effective repair system to eliminate the lesions. Because the DNA damaged sperm still has fertilizability and developmental potentiality, damage repair may occur after fertilization, but its mechanism remains unknown. Histone H2AX phosphorylation (gammaH2AX) is reportedly involved in the repair of damaged sperm DNA after fertilization. This review aims to summarize the present knowledge on the mechanism of gammaH2AX-mediated repair of DNA damaged sperm in the zygote.
DNA Damage
;
DNA Repair
;
Histones
;
metabolism
;
Humans
;
Male
;
Phosphorylation
;
Spermatozoa
;
pathology
;
Zygote

Result Analysis
Print
Save
E-mail