1.Transparency of clinical practice guidelines: A mixed methods research.
Xinyi WANG ; Youlin LONG ; Tengyue HU ; Zixin YANG ; Liqin LIU ; Liu YANG ; Yifan CHENG ; Ran GU ; Yanjiao SHEN ; Nan YANG ; Jin HUANG ; Yaolong CHEN ; Liang DU
Chinese Medical Journal 2025;138(15):1882-1884
2.Artificial intelligence in traditional Chinese medicine: from systems biological mechanism discovery, real-world clinical evidence inference to personalized clinical decision support.
Dengying YAN ; Qiguang ZHENG ; Kai CHANG ; Rui HUA ; Yiming LIU ; Jingyan XUE ; Zixin SHU ; Yunhui HU ; Pengcheng YANG ; Yu WEI ; Jidong LANG ; Haibin YU ; Xiaodong LI ; Runshun ZHANG ; Wenjia WANG ; Baoyan LIU ; Xuezhong ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1310-1328
Traditional Chinese medicine (TCM) represents a paradigmatic approach to personalized medicine, developed through the systematic accumulation and refinement of clinical empirical data over more than 2000 years, and now encompasses large-scale electronic medical records (EMR) and experimental molecular data. Artificial intelligence (AI) has demonstrated its utility in medicine through the development of various expert systems (e.g., MYCIN) since the 1970s. With the emergence of deep learning and large language models (LLMs), AI's potential in medicine shows considerable promise. Consequently, the integration of AI and TCM from both clinical and scientific perspectives presents a fundamental and promising research direction. This survey provides an insightful overview of TCM AI research, summarizing related research tasks from three perspectives: systems-level biological mechanism elucidation, real-world clinical evidence inference, and personalized clinical decision support. The review highlights representative AI methodologies alongside their applications in both TCM scientific inquiry and clinical practice. To critically assess the current state of the field, this work identifies major challenges and opportunities that constrain the development of robust research capabilities-particularly in the mechanistic understanding of TCM syndromes and herbal formulations, novel drug discovery, and the delivery of high-quality, patient-centered clinical care. The findings underscore that future advancements in AI-driven TCM research will rely on the development of high-quality, large-scale data repositories; the construction of comprehensive and domain-specific knowledge graphs (KGs); deeper insights into the biological mechanisms underpinning clinical efficacy; rigorous causal inference frameworks; and intelligent, personalized decision support systems.
Medicine, Chinese Traditional/methods*
;
Artificial Intelligence
;
Humans
;
Precision Medicine
;
Decision Support Systems, Clinical
3.Soil microorganisms and physicochemical properties in marshlands along the Yangtze River basin at different types of land use and their effects on distribution of Oncomelania hupensis snails
Huan HE ; Jinxing ZHOU ; Zixin GAO ; Zichun LU ; Renlong DAI ; Xingyi HU ; Hongdong PANG
Chinese Journal of Schistosomiasis Control 2024;36(2):148-153
Objective To investigating the microbial communities and physicochemical properties of soil and distribution of Oncomelania hupensis snails in marshlands along the Yangtze River basin at different types of land use, and to examine the effects of soil microorganisms and physicochemical properties on snail distribution, so as to provide insights into snail control and schistosomiasis prevention in marshland along the Yangtze River basin. Methods Marshlands with four types of land use were selected along the Yangtze River basin on April 2021, including poplar forest-crops integrated planting, reed areas, agricultural cultivation lands and ditches. The distribution of snails and physicochemical properties of soil were investigated in marshlands with different types of land use, and the V3 to V4 regions of the bacterial 16S ribosomal RNA (16S rRNA) gene, fungal internal transcribed spacer-1 (ITS1) gene and algal ribulose-bisphosphate carboxylase (rbcL) gene in soils were subjected to high-throughput sequencing. The occurrence of frames with living snails and density of living snails were compared in marshland with different types of land use. The associations of soil microorganisms and physicochemical properties with the density of living snails were examined using Pearson correlation analysis, and the contributions of soil microorganisms and physicochemical properties to the density of living snails were evaluated using variance partitioning analysis. Results In marshlands with four types of land use, the greatest occurrence of frames with living snails [(4.94 ± 2.14)%] and density of living snails [(0.070 ± 0.026) snails/0.1 m2] were seen in ditches, and the lowest were found in [(1.23 ± 1.23)%] agricultural cultivation lands [(0.016 ± 0.019) snails/0.1 m2]. A total of 2 phyla, 5 classes, 8 orders, 9 families and 11 genera of algae were detected in soils at four types of land use, with Chlorophyta as the dominant phylum and Pseudoneochloris as the dominant genus. A total of 44 phyla, 134 classes, 281 orders, 338 families and 516 genera of bacteria were detected in soils at four types of land use, with Proteobacteria and Acidobacteriota as the dominant phyla and uncultured Acidobacterium, MND1, Mitrospira, Haliangium and Sphingomonas as dominant genera. A total of 11 phyla, 41 classes, 108 orders, 223 families and 408 genera of fungi were detected in soils at four types of land use, with phyla Ascomycota, Basidiomycota and Mortierellomycota presenting high relative abundances and genera Cladorrhinum, Mortierella and Humicola presenting high relative abundances. Pearson correlation analysis revealed that the density of living snails correlated negatively with the relative abundance of Proteobacteria (r = −0.965, P < 0.05) and soil electronic conductivity (r = −0.962, P < 0.05) and positively with soil moisture (r = 0.951, P < 0.05). Variance partitioning analysis demonstrated that the physicochemical properties and microorganisms of soil contributed 69% and 10% to the density of living snails, respectively. Conclusion The diversity of microbial communities varies in soils at different types of land use in marshland along the Yangtze River basin, and the physicochemical properties and microorganisms of soils may affect the distribution of O. hupensis snails.
4.Exosomes-Shuttled lncRNA SNHG7 by Bone Marrow Mesenchymal Stem Cells Alleviates Osteoarthritis Through Targeting miR-485-5p/FSP1 Axis-Mediated Chondrocytes Ferroptosis and Inflammation
Yue WANG ; Kaili HU ; Changdi LIAO ; Ting HAN ; Fenglin JIANG ; Zixin GAO ; Jinhua YAN
Tissue Engineering and Regenerative Medicine 2024;21(8):1203-1216
BACKGROUND:
Osteoarthritis (OA), a degenerative joint disorder, is a major reason of disability in adults. Accumulating evidences have proved that bone marrow mesenchymal stem cells (BMSCs)-carried exosomes play a significant therapeutic effect on OA. However, the precise regulatory network remains unknown.
METHODS:
OA and normal cartilage samples were acquired from patients, and chondrocytes were exposed to IL-1b to conduct a cellular OA model. Exosomes prepared from BMSCs were identified using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Cell viability was determined with CCK-8 assay. Inflammatory injury was assessed by LDH and inflammatory factors (TNF-a and IL-6) using corresponding ELISA kits, respectively. Ferroptosis was evaluated by GSH, MDA and iron levels using corresponding kits, and ROS level with DCFH-DA. The expressions of genes/proteins were determined with RT-qPCR/western bolt. RNA immunoprecipitation and luciferase activity assay were conducted for testing the interactions of small nucleolar RNA host gene 7 (SNHG7)/ferroptosis suppressor protein 1 (FSP1) and miR-485-5p.
RESULTS:
The expressions of SNHG7 and FSP1 were both reduced in IL-1b-induced chondrocytes and OA cartilage tissues, and there was a positive correlation between them in clinical level. Moreover, SNHG7 was enriched in BMSCsderived exosomes (BMSCs-Exos) and could be internalized by chondrocytes. Functional analysis illustrated that BMSCsExos administration repressed inflammatory injury, oxidative stress and ferroptosis in IL-1b-induced chondrocytes, while these changes were reinforced when SNHG7 was overexpressed in BMSCs-Exos. Notably, FSP1 silencing in chondrocytes abolished the beneficial effects mediated by exosomal SNHG7.
CONCLUSIONS
Exosomal SNHG7 released from BMSCs inhibited inflammation and ferroptosis in IL-1b-induced chondrocytes through miR-485-5p/FSP1 axis. This work suggested that BMSCs-derived exosomal SNHG7 would be a prospective target for OA treatment.
5.Exosomes-Shuttled lncRNA SNHG7 by Bone Marrow Mesenchymal Stem Cells Alleviates Osteoarthritis Through Targeting miR-485-5p/FSP1 Axis-Mediated Chondrocytes Ferroptosis and Inflammation
Yue WANG ; Kaili HU ; Changdi LIAO ; Ting HAN ; Fenglin JIANG ; Zixin GAO ; Jinhua YAN
Tissue Engineering and Regenerative Medicine 2024;21(8):1203-1216
BACKGROUND:
Osteoarthritis (OA), a degenerative joint disorder, is a major reason of disability in adults. Accumulating evidences have proved that bone marrow mesenchymal stem cells (BMSCs)-carried exosomes play a significant therapeutic effect on OA. However, the precise regulatory network remains unknown.
METHODS:
OA and normal cartilage samples were acquired from patients, and chondrocytes were exposed to IL-1b to conduct a cellular OA model. Exosomes prepared from BMSCs were identified using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Cell viability was determined with CCK-8 assay. Inflammatory injury was assessed by LDH and inflammatory factors (TNF-a and IL-6) using corresponding ELISA kits, respectively. Ferroptosis was evaluated by GSH, MDA and iron levels using corresponding kits, and ROS level with DCFH-DA. The expressions of genes/proteins were determined with RT-qPCR/western bolt. RNA immunoprecipitation and luciferase activity assay were conducted for testing the interactions of small nucleolar RNA host gene 7 (SNHG7)/ferroptosis suppressor protein 1 (FSP1) and miR-485-5p.
RESULTS:
The expressions of SNHG7 and FSP1 were both reduced in IL-1b-induced chondrocytes and OA cartilage tissues, and there was a positive correlation between them in clinical level. Moreover, SNHG7 was enriched in BMSCsderived exosomes (BMSCs-Exos) and could be internalized by chondrocytes. Functional analysis illustrated that BMSCsExos administration repressed inflammatory injury, oxidative stress and ferroptosis in IL-1b-induced chondrocytes, while these changes were reinforced when SNHG7 was overexpressed in BMSCs-Exos. Notably, FSP1 silencing in chondrocytes abolished the beneficial effects mediated by exosomal SNHG7.
CONCLUSIONS
Exosomal SNHG7 released from BMSCs inhibited inflammation and ferroptosis in IL-1b-induced chondrocytes through miR-485-5p/FSP1 axis. This work suggested that BMSCs-derived exosomal SNHG7 would be a prospective target for OA treatment.
6.Exosomes-Shuttled lncRNA SNHG7 by Bone Marrow Mesenchymal Stem Cells Alleviates Osteoarthritis Through Targeting miR-485-5p/FSP1 Axis-Mediated Chondrocytes Ferroptosis and Inflammation
Yue WANG ; Kaili HU ; Changdi LIAO ; Ting HAN ; Fenglin JIANG ; Zixin GAO ; Jinhua YAN
Tissue Engineering and Regenerative Medicine 2024;21(8):1203-1216
BACKGROUND:
Osteoarthritis (OA), a degenerative joint disorder, is a major reason of disability in adults. Accumulating evidences have proved that bone marrow mesenchymal stem cells (BMSCs)-carried exosomes play a significant therapeutic effect on OA. However, the precise regulatory network remains unknown.
METHODS:
OA and normal cartilage samples were acquired from patients, and chondrocytes were exposed to IL-1b to conduct a cellular OA model. Exosomes prepared from BMSCs were identified using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Cell viability was determined with CCK-8 assay. Inflammatory injury was assessed by LDH and inflammatory factors (TNF-a and IL-6) using corresponding ELISA kits, respectively. Ferroptosis was evaluated by GSH, MDA and iron levels using corresponding kits, and ROS level with DCFH-DA. The expressions of genes/proteins were determined with RT-qPCR/western bolt. RNA immunoprecipitation and luciferase activity assay were conducted for testing the interactions of small nucleolar RNA host gene 7 (SNHG7)/ferroptosis suppressor protein 1 (FSP1) and miR-485-5p.
RESULTS:
The expressions of SNHG7 and FSP1 were both reduced in IL-1b-induced chondrocytes and OA cartilage tissues, and there was a positive correlation between them in clinical level. Moreover, SNHG7 was enriched in BMSCsderived exosomes (BMSCs-Exos) and could be internalized by chondrocytes. Functional analysis illustrated that BMSCsExos administration repressed inflammatory injury, oxidative stress and ferroptosis in IL-1b-induced chondrocytes, while these changes were reinforced when SNHG7 was overexpressed in BMSCs-Exos. Notably, FSP1 silencing in chondrocytes abolished the beneficial effects mediated by exosomal SNHG7.
CONCLUSIONS
Exosomal SNHG7 released from BMSCs inhibited inflammation and ferroptosis in IL-1b-induced chondrocytes through miR-485-5p/FSP1 axis. This work suggested that BMSCs-derived exosomal SNHG7 would be a prospective target for OA treatment.
7.Exosomes-Shuttled lncRNA SNHG7 by Bone Marrow Mesenchymal Stem Cells Alleviates Osteoarthritis Through Targeting miR-485-5p/FSP1 Axis-Mediated Chondrocytes Ferroptosis and Inflammation
Yue WANG ; Kaili HU ; Changdi LIAO ; Ting HAN ; Fenglin JIANG ; Zixin GAO ; Jinhua YAN
Tissue Engineering and Regenerative Medicine 2024;21(8):1203-1216
BACKGROUND:
Osteoarthritis (OA), a degenerative joint disorder, is a major reason of disability in adults. Accumulating evidences have proved that bone marrow mesenchymal stem cells (BMSCs)-carried exosomes play a significant therapeutic effect on OA. However, the precise regulatory network remains unknown.
METHODS:
OA and normal cartilage samples were acquired from patients, and chondrocytes were exposed to IL-1b to conduct a cellular OA model. Exosomes prepared from BMSCs were identified using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Cell viability was determined with CCK-8 assay. Inflammatory injury was assessed by LDH and inflammatory factors (TNF-a and IL-6) using corresponding ELISA kits, respectively. Ferroptosis was evaluated by GSH, MDA and iron levels using corresponding kits, and ROS level with DCFH-DA. The expressions of genes/proteins were determined with RT-qPCR/western bolt. RNA immunoprecipitation and luciferase activity assay were conducted for testing the interactions of small nucleolar RNA host gene 7 (SNHG7)/ferroptosis suppressor protein 1 (FSP1) and miR-485-5p.
RESULTS:
The expressions of SNHG7 and FSP1 were both reduced in IL-1b-induced chondrocytes and OA cartilage tissues, and there was a positive correlation between them in clinical level. Moreover, SNHG7 was enriched in BMSCsderived exosomes (BMSCs-Exos) and could be internalized by chondrocytes. Functional analysis illustrated that BMSCsExos administration repressed inflammatory injury, oxidative stress and ferroptosis in IL-1b-induced chondrocytes, while these changes were reinforced when SNHG7 was overexpressed in BMSCs-Exos. Notably, FSP1 silencing in chondrocytes abolished the beneficial effects mediated by exosomal SNHG7.
CONCLUSIONS
Exosomal SNHG7 released from BMSCs inhibited inflammation and ferroptosis in IL-1b-induced chondrocytes through miR-485-5p/FSP1 axis. This work suggested that BMSCs-derived exosomal SNHG7 would be a prospective target for OA treatment.
8.Exosomes-Shuttled lncRNA SNHG7 by Bone Marrow Mesenchymal Stem Cells Alleviates Osteoarthritis Through Targeting miR-485-5p/FSP1 Axis-Mediated Chondrocytes Ferroptosis and Inflammation
Yue WANG ; Kaili HU ; Changdi LIAO ; Ting HAN ; Fenglin JIANG ; Zixin GAO ; Jinhua YAN
Tissue Engineering and Regenerative Medicine 2024;21(8):1203-1216
BACKGROUND:
Osteoarthritis (OA), a degenerative joint disorder, is a major reason of disability in adults. Accumulating evidences have proved that bone marrow mesenchymal stem cells (BMSCs)-carried exosomes play a significant therapeutic effect on OA. However, the precise regulatory network remains unknown.
METHODS:
OA and normal cartilage samples were acquired from patients, and chondrocytes were exposed to IL-1b to conduct a cellular OA model. Exosomes prepared from BMSCs were identified using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Cell viability was determined with CCK-8 assay. Inflammatory injury was assessed by LDH and inflammatory factors (TNF-a and IL-6) using corresponding ELISA kits, respectively. Ferroptosis was evaluated by GSH, MDA and iron levels using corresponding kits, and ROS level with DCFH-DA. The expressions of genes/proteins were determined with RT-qPCR/western bolt. RNA immunoprecipitation and luciferase activity assay were conducted for testing the interactions of small nucleolar RNA host gene 7 (SNHG7)/ferroptosis suppressor protein 1 (FSP1) and miR-485-5p.
RESULTS:
The expressions of SNHG7 and FSP1 were both reduced in IL-1b-induced chondrocytes and OA cartilage tissues, and there was a positive correlation between them in clinical level. Moreover, SNHG7 was enriched in BMSCsderived exosomes (BMSCs-Exos) and could be internalized by chondrocytes. Functional analysis illustrated that BMSCsExos administration repressed inflammatory injury, oxidative stress and ferroptosis in IL-1b-induced chondrocytes, while these changes were reinforced when SNHG7 was overexpressed in BMSCs-Exos. Notably, FSP1 silencing in chondrocytes abolished the beneficial effects mediated by exosomal SNHG7.
CONCLUSIONS
Exosomal SNHG7 released from BMSCs inhibited inflammation and ferroptosis in IL-1b-induced chondrocytes through miR-485-5p/FSP1 axis. This work suggested that BMSCs-derived exosomal SNHG7 would be a prospective target for OA treatment.
9.Role of stakeholders in Canadian oncology drug review and its enlightenment
Wanru WANG ; Jinping XIE ; Zixin HU ; Rong SHAO
China Pharmacy 2022;33(9):1031-1036
OBJECTIVE To prov ide reference for improving the participation mechanism of stakeholders in the process of medical insurance negotiation for oncology drug in China. METHODS Based on the stakeholder theory ,combined with literature research,case analysis (taking the review of reimbursement of Bentuximab as an example )and other methods ,analysis and research were conducted on the Canadian oncology drug review process and the participation mechanism and role of stakeholders. The suggestions were put forward for our country. RESULTS & CONCLUSIONS Canadian oncology drug reimbursement review process was composed of four stages :the pre-submission planning stage ,the formal submission stage of application,the review stage,and the stage of forming reimbursement recommendations. As the role of stakeholders ,drug manufacturers ,patient representative advisory group , clinical review expert advisory groups and provincial advisory groups participated in the reimbursement review process of oncology drug by providing suggestions and feedback to CADTH. The participation of stakeholders had improved the transparency of the review of oncology drugs in Canada and made the reimbursement results of oncology drugs more scientific ,reasonable and accurate. In China ,it is recommended to define rights ,responsibilities and interests as well as the participation mechanism of stakeholders in the medical insurance negotiation process ,attach importance to the role of patients in the medical insurance negotiation process of oncology drug ,improve information disclosure and increase the transparency of the negotiation mechanism and process so as to increase the participation of stakeholders.
10.Semimonthly Table of Contents Comparison of the effect between drug donation model and national drug negotiated model on drug sales : taking trastuzumab as an example
Zixin HU ; Jinping XIE ; Wanru WANG ; Rong SHAO
China Pharmacy 2022;33(19):2305-2308
OBJECTIVE To compare the effect between drug donation model and national drug negotiated model on drug sales,and to provide reference for pharmaceutical enterprises to optimize their business strategies . METHODS Based on medical insurance statistics and settlement data of city A in Jiangsu province from 2013 to 2018,trastuzumab was selected as the representative drug . The sales and utilization of trastuzumab were compared during the implementation of the two models . At the same time ,the changes of medication behavior of some patients were analyzed . RESULTS After the implementation of drug donation model ,sales volume and turnover of trastuzumab increase by 193.87% and 155.71% in that year compared with the previous year ,and then the growth trend became stable ;after including the national negotiated drug list ,the number of users of trastuzumab in the year increased by 87.68% compared with the previous year ,and the sales volume increased by 48.06%;turnover increased by 22.81% even though the unit price decreased significantly . Both models could improve drug sales ,and the results of multiple linear regression also proved that different models had a significant impact on the consumption sum of trastuzumab in patients. CONCLUSIONS Under the condition that the unit price level of drugs is approximately the same ,both drug donation model and national drug negotiated model can increase the sales volume and expand the coverage of drugs . The latter reduces the drug threshold of patients ,and plays a positive role in improving the drug accessibility of patients and the sales and development of enterprises.

Result Analysis
Print
Save
E-mail