1.Mechanism of Modified Shengjiangsan in Improving Diabetic Kidney Disease by Activating Mitochondrial Autophagy Based on PINK1/Parkin Signaling Pathway
Jiaxin LI ; Liya ZHOU ; Yishuo ZHANG ; Ziqiang CHEN ; Yijun HOU ; Jian SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):121-128
ObjectiveTo investigate the mechanism by which modified Shengjiangsan (MSJS) improves diabetic kidney disease (DKD) by activating mitochondrial autophagy. MethodsSixty SPF-grade male Sprague-Dawley rats aged 7-8 weeks were selected. A DKD model was established using a high-sugar, high-fat diet combined with intraperitoneal injection of streptozotocin (STZ). After successful modeling, the rats were randomly divided into six groups: a normal control group, a model group, low-, medium-, and high-dose MSJS groups (7.7, 15.4, 30.8 g·kg-1, respectively), and an irbesartan group (0.384 g·kg-1). Each group received either normal saline or the corresponding drug by gavage once daily for 28 consecutive days. Blood glucose, body weight, and kidney weight were recorded. Serum creatinine (SCr) and blood urea nitrogen (BUN) levels were detected using an automatic blood analyzer. Enzyme-linked immunosorbent assay (ELISA) was used to determine urinary microalbumin (mALB), and serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Histopathological changes in renal tissues were observed using hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and transmission electron microscopy (TEM). The expression levels of mitochondrial autophagy-related proteins in renal tissues were analyzed by Western blot. Immunofluorescence co-localization was employed to detect the co-expression of microtubule-associated protein 1 light chain 3 beta (LC3B) and cytochrome c oxidase subunit Ⅳ (COX Ⅳ). ResultsCompared with the normal control group, the model group exhibited significant increases in renal index, blood glucose, and 24-hour urinary microalbumin (24 h mALB) (P<0.05, P<0.01). The levels of serum SCr and BUN were significantly elevated (P<0.01), and the serum levels of TNF-α, IL-1β, and IL-6 were markedly upregulated (P<0.01). Histopathological examination revealed glomerular hypertrophy, mesangial expansion and increased deposition, podocyte foot process flattening and fusion, a decreased number of autophagosomes accompanied by mitochondrial swelling, vacuolar degeneration of renal tubular epithelial cells, and inflammatory cell infiltration in the renal interstitium. The expression levels of autophagy-related proteins LC3B, PTEN-induced putative kinase 1 (PINK1), and E3 ubiquitin-protein ligase (Parkin) were significantly decreased (P<0.05, P<0.01), while expression of the selective autophagy adaptor protein p62 was significantly increased (P<0.01). Immunofluorescence signal intensity and LC3B-COX Ⅳ co-expression were both diminished. Compared with the model group, the MSJS treatment groups and the irbesartan group showed significant reductions in renal index, blood glucose, and 24 h mALB (P<0.05, P<0.01). The serum SCr and BUN levels decreased significantly (P<0.05) and TNF-α, IL-1β, and IL-6 levels were significantly downregulated (P<0.05, P<0.01). Histopathological damage was alleviated, including reduced glomerular hypertrophy, decreased mesangial deposition, and attenuated podocyte foot process fusion. The number of autophagosomes increased, and mitochondrial swelling was improved. The expression levels of LC3B, PINK1, and Parkin in renal tissues were significantly upregulated, whereas p62 expression was significantly downregulated (P<0.05, P<0.01) in MSJS groups. Immunofluorescence signal intensity was enhanced, and LC3B-COX Ⅳ co-expression was increased. ConclusionMSJS alleviates the inflammatory response in DKD rats and exerts renal protective effects by regulating the PINK1/Parkin signaling pathway and activating mitochondrial autophagy.
2.Mechanism of Modified Shengjiangsan in Improving Diabetic Kidney Disease by Activating Mitochondrial Autophagy Based on PINK1/Parkin Signaling Pathway
Jiaxin LI ; Liya ZHOU ; Yishuo ZHANG ; Ziqiang CHEN ; Yijun HOU ; Jian SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):121-128
ObjectiveTo investigate the mechanism by which modified Shengjiangsan (MSJS) improves diabetic kidney disease (DKD) by activating mitochondrial autophagy. MethodsSixty SPF-grade male Sprague-Dawley rats aged 7-8 weeks were selected. A DKD model was established using a high-sugar, high-fat diet combined with intraperitoneal injection of streptozotocin (STZ). After successful modeling, the rats were randomly divided into six groups: a normal control group, a model group, low-, medium-, and high-dose MSJS groups (7.7, 15.4, 30.8 g·kg-1, respectively), and an irbesartan group (0.384 g·kg-1). Each group received either normal saline or the corresponding drug by gavage once daily for 28 consecutive days. Blood glucose, body weight, and kidney weight were recorded. Serum creatinine (SCr) and blood urea nitrogen (BUN) levels were detected using an automatic blood analyzer. Enzyme-linked immunosorbent assay (ELISA) was used to determine urinary microalbumin (mALB), and serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Histopathological changes in renal tissues were observed using hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and transmission electron microscopy (TEM). The expression levels of mitochondrial autophagy-related proteins in renal tissues were analyzed by Western blot. Immunofluorescence co-localization was employed to detect the co-expression of microtubule-associated protein 1 light chain 3 beta (LC3B) and cytochrome c oxidase subunit Ⅳ (COX Ⅳ). ResultsCompared with the normal control group, the model group exhibited significant increases in renal index, blood glucose, and 24-hour urinary microalbumin (24 h mALB) (P<0.05, P<0.01). The levels of serum SCr and BUN were significantly elevated (P<0.01), and the serum levels of TNF-α, IL-1β, and IL-6 were markedly upregulated (P<0.01). Histopathological examination revealed glomerular hypertrophy, mesangial expansion and increased deposition, podocyte foot process flattening and fusion, a decreased number of autophagosomes accompanied by mitochondrial swelling, vacuolar degeneration of renal tubular epithelial cells, and inflammatory cell infiltration in the renal interstitium. The expression levels of autophagy-related proteins LC3B, PTEN-induced putative kinase 1 (PINK1), and E3 ubiquitin-protein ligase (Parkin) were significantly decreased (P<0.05, P<0.01), while expression of the selective autophagy adaptor protein p62 was significantly increased (P<0.01). Immunofluorescence signal intensity and LC3B-COX Ⅳ co-expression were both diminished. Compared with the model group, the MSJS treatment groups and the irbesartan group showed significant reductions in renal index, blood glucose, and 24 h mALB (P<0.05, P<0.01). The serum SCr and BUN levels decreased significantly (P<0.05) and TNF-α, IL-1β, and IL-6 levels were significantly downregulated (P<0.05, P<0.01). Histopathological damage was alleviated, including reduced glomerular hypertrophy, decreased mesangial deposition, and attenuated podocyte foot process fusion. The number of autophagosomes increased, and mitochondrial swelling was improved. The expression levels of LC3B, PINK1, and Parkin in renal tissues were significantly upregulated, whereas p62 expression was significantly downregulated (P<0.05, P<0.01) in MSJS groups. Immunofluorescence signal intensity was enhanced, and LC3B-COX Ⅳ co-expression was increased. ConclusionMSJS alleviates the inflammatory response in DKD rats and exerts renal protective effects by regulating the PINK1/Parkin signaling pathway and activating mitochondrial autophagy.
3.Efficacy and safety of proximal gastrectomy versus total gastrectomy for Siewert type Ⅱ and Ⅲ adenocarcinoma of the esophagogastric junction: A systematic review and meta-analysis
Yingjie LU ; Ziqiang HONG ; Hongchao LI ; Gang JIN ; Wenhao WANG ; Yi YANG ; Bin LIU ; Zijiang ZHU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):693-699
Objective To systematically evaluate the efficacy and safety of proximal gastrectomy (PG) versus total gastrectomy (TG) for the treatment of Siewert type Ⅱ/Ⅲ adenocarcinoma of the esophagogastric junction (AEG). Methods PubMed, The Cochrane Library, Web of Science, EMbase, CNKI, Wanfang, and VIP databases were searched for literature comparing the efficacy and safety of PG and TG for the treatment of Siewert type Ⅱ/Ⅲ AEG. The search period was from database inception to March 2023. Meta-analysis was performed using Review Manager 5.4 software. Results A total of 23 articles were included, including 16 retrospective cohort studies, 5 prospective cohort studies, and 2 randomized controlled trials. The total sample size was 2 826 patients, with 1 389 patients undergoing PG and 1 437 patients undergoing TG. Meta-analysis results showed that compared with TG, PG had less intraoperative blood loss [MD=−19.85, 95%CI (−37.20, −2.51), P=0.02] and shorter postoperative hospital stay [MD=−1.23, 95%CI (−2.38, −0.08), P=0.04]. TG had a greater number of lymph nodes dissected [MD=−6.20, 95%CI (−7.68, −4.71), P<0.001] and a lower incidence of reflux esophagitis [MD=3.02, 95%CI (1.24, 7.34), P=0.01]. There were no statistically significant differences between the two surgical approaches in terms of operative time, postoperative survival rate (1-year, 3-year, 5-year), and postoperative overall complications (P>0.05). Conclusion PG has advantages in terms of intraoperative blood loss and postoperative hospital stay, while TG has advantages in terms of the number of lymph nodes dissected and the incidence of reflux esophagitis. There is no significant difference in long-term survival between the two surgical approaches.
4.Short-term efficacy and safety of McKeown and Sweet operation in the treatment of esophageal cancer: A systematic review and meta-analysis
Tao CHENG ; Xusheng WU ; Ziqiang HONG ; Hongchao LI ; Yunjiu GOU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(06):839-845
Objective To systematically evaluate the short-term efficacy and safety of McKeown and Sweet methods in the treatment of esophageal cancer. Methods PubMed, EMbase, The Cochrane Library, Web of Science, Wanfang, VIP, CNKI and Chinese Biomedical Literature database were searched for literature on the short-term efficacy and safety of McKeown and Sweet methods in the treatment of esophageal cancer published from the establishment to May 2023. Newcastle-Ottawa Scale was used to evaluate the quality of researches, and meta-analysis was performed using RevMan5.4. Results A total of 9 articles were included, involving 3687 patients including 1019 in the McKeown group and 2668 in the Sweet group. NOS score was 8-9 points. There were no statistical differences in the age, sex or American Joint Committee on Cancer stage between the two groups (P>0.05). Patients in the McKeown group had longer operative time and hospital stay, more intraoperative blood loss, and higher Eastern Cooperative Oncology Group scores than those in the Sweet group (P<0.05). However, the McKeown operation could remove more lymph nodes (P=0.001). In terms of safety, the incidences of pulmonary complications [OR=2.20, 95%CI (1.40, 3.46), P=0.001] and postoperative anastomotic leakage [OR=2.06, 95%CI (1.45, 2.92), P=0.001] were higher in the McKeown group than those in the Sweet group. In addition, there were no statistical differences between the two groups in the Karnofsky score, cardiac complications, vocal cord injury or paralysis, chylous leakage, or gastric emptying (P>0.05). Conclusion Compared with McKeown, Sweet method has advantages in operation time, intraoperative blood loss and hospital stay, and has lower incidence of postoperative pulmonary complications and anastomotic leakage. However, McKeown has more lymph node dissection.
5.Intestinal metabolites in colitis-associated carcinogenesis: Building a bridge between host and microbiome.
Yating FAN ; Yang LI ; Xiangshuai GU ; Na CHEN ; Ye CHEN ; Chao FANG ; Ziqiang WANG ; Yuan YIN ; Hongxin DENG ; Lei DAI
Chinese Medical Journal 2025;138(16):1961-1972
Microbial-derived metabolites are important mediators of host-microbial interactions. In recent years, the role of intestinal microbial metabolites in colorectal cancer has attracted considerable attention. These metabolites, which can be derived from bacterial metabolism of dietary substrates, modification of host molecules such as bile acids, or directly from bacteria, strongly influence the progression of colitis-associated cancer (CAC) by regulating inflammation and immune response. Here, we review how microbiome metabolites short-chain fatty acids (SCFAs), secondary bile acids, polyamines, microbial tryptophan metabolites, and polyphenols are involved in the tumorigenesis and development of CAC through inflammation and immunity. Given the heated debate on the metabolites of microbiota in maintaining gut homeostasis, serving as tumor molecular markers, and affecting the efficacy of immune checkpoint inhibitors in recent years, strategies for the prevention and treatment of CAC by targeting intestinal microbial metabolites are also discussed in this review.
Humans
;
Gastrointestinal Microbiome/physiology*
;
Animals
;
Carcinogenesis/metabolism*
;
Colitis-Associated Neoplasms/microbiology*
;
Fatty Acids, Volatile/metabolism*
;
Bile Acids and Salts/metabolism*
;
Colitis/microbiology*
6.A multi-enzyme cascade process for the preparation of L-phosphinothricin.
Manman WANG ; Yu YANG ; Xianbing SONG ; Xiaolian LI ; Binchun LI ; Ziqiang WANG
Chinese Journal of Biotechnology 2025;41(9):3589-3603
L-phosphinothricin (L-PPT) is an efficient broad-spectrum herbicide. To realize the multi-enzyme catalytic preparation of L-PPT, we constructed an engineered strain Escherichia coli YM-1 for efficient expression of D-amino acid transaminase, which could catalyze the generation of the intermediate 2-oxo-4-[(hydroxymethylphosphonyl)] butyric acid (PPO) from D-phosphinothricin (D-PPT). In addition, E. coli pLS was constructed to co-express glutamate dehydrogenase and glucose dehydrogenase, which not only catalyzed the generation of L-PPT from PPO but also regenerated the coenzyme nicotinamide adenine dinucleotide phosphate (NADPH). A fed-batch fermentation process was then established for E. coli YM-1 and pLS, and the apparent activities of D-amino acid transaminase and glutamate dehydrogenase were increased by 22.68% and 100.82%, respectively, compared with those in shake flasks. The process parameters were optimized for the catalytic preparation of L-PPT by whole-cell cascade of E. coli YM-1 and pLS with D, L-PPT as the substrate. After reaction for 8 h, 91.36% conversion of D-PPT was achieved, and the enantiomeric excess of L-PPT reached 90.22%. The findings underpin the industrial production of L-PPT.
Escherichia coli/enzymology*
;
Aminobutyrates/metabolism*
;
Glutamate Dehydrogenase/biosynthesis*
;
Glucose 1-Dehydrogenase/biosynthesis*
;
Herbicides/metabolism*
;
Multienzyme Complexes/metabolism*
;
Transaminases/metabolism*
;
Phosphinic Acids/metabolism*
7.Status quo of pain catastrophizing in patients with diabetic peripheral neuropathic pain and influencing factors analysis
Ziqiang LI ; Guifen FU ; Yanping ZHANG ; Xiang LI ; Xin ZHANG ; Lin ZENG ; Qiuping ZHENG ; Xiaomin XIAN ; Miao WANG
Chongqing Medicine 2024;53(22):3389-3395,3400
Objective To investigate the status quo of pain catastrophizing(PC)in the patients with di-abetic peripheral neuropathic pain(DPNP),and to analyze the influencing factors to provide reference for for-mulating clinical preventive intervention strategies.Methods A total of 206 patients with DPNP admitted and treated in the People's Hospital of Guangxi Zhuang Autonomous Region were selected as the research sub-jects by convenience sampling method.The general data questionnaire,Numerical Rating Scale(NRS),Pain Catastrophizing scale(PCS),Perceived Social Support Scale(PSSS)and diabetes distress scale(DDS)were used to conduct the investigation.Results The incidence rate of PC in 206 cases of DPNP patients was 44.66%(92/206),and the total score of PCS was(30.10±5.16)points.The results of multiple linear regres-sion analysis showed that the gender,duration of diabetes(≥10 years),multiple drug use,number of compli-cations(>5),NRS score,PSSS score and scores of DDS dimensions were the main influencing factors of PC(all P<0.05),which could explain 92.3%of the total variation of PC.Conclusion The PC incidence rate in the patients with DPNP is high.Clinical healthcare workers should pay attention to the evaluation of PC in these patients,and formulate the scientific and effective targeted intervention measures according to the main influen-cing factors to help the patients to reduce the pain burden in order to reduce the level of PC.
8.Efficacy Evaluation of Qishen Yizhi Formula in Improving the Learning and Memory Ability of D-Galactose Induced Suba-cute Aging Mice
Yang CHEN ; Ziqiang ZHU ; Yunqing LU ; Jiani ZHENG ; Cheng CAO ; Jiaxiang TONG ; Xuan LI ; Sheng GUO ; Hongjie KANG ; Jinao DUAN ; Yue ZHU
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(2):145-152
OBJECTIVE To evaluate the effect of Qishen Yizhi formula on improving learning and memory ability in D-galactose subcutaneous injection induced subacute aging mice.METHODS Subacute aging mice model mice were developed by D-galactose subcutaneous injection and then treated with positive drug donepezil(2 mg·kg-1·d-1)and Qishen Yizhi formula water extracts in low(1.33 g·kg-1·d-1)and high dose group(2.67 g·kg-1·d-1).The learning and memory abilities of mice were evaluated using Morris water maze and Y maze tests;HE staining was used to examine hippocampal damage in model mice;TUNEL was used to detect apoptosis of mouse hippocampal tissue;ELISA was used to detect the expression levels of oxidative stress factors and inflammatory fac-tors in the mouse hippocampus tissue;Western blot was used to detect the expression of signaling pathway proteins related to apoptosis,oxidative stress and inflammatory stress in the hippocampus of mice.RESULTS The water extract of Qishen Yizhi formula signifi-cantly shortened the latency and distance of model mice for reaching the platform in the water maze test(P<0.01),and significantly increased the number of crossing the platform(P<0.01);increased the exploration time and number of the Y maze new arm in model mice(P<0.05);inhibited the TUNEL fluorescence expression in the hippocampus of model mice(P<0.01);upregulated the activity of the oxidative stress factor superoxide dismutase(SOD)(P<0.05)and glutathione(GSH)content(P<0.05),and downregulated malondialdehyde(MDA)content(P<0.05);reduced interleukin(IL)-1β,IL-6 and tumor necrosis factor(TNF-α)expression levels(P<0.05,P<0.01);decreased the expression of apoptosis signaling pathway proteins Cleaved Caspase-3 and Caspase-3(P<0.05),upregulated the expression of oxidative stress signaling pathway proteins Nrf2 and HO-1(P<0.05),and downregulated the expression of inflammatory stress signaling pathway proteins p-NF-κB and NF-κB(P<0.05).CONCLUSION Qishen Yizhi for-mula can improve the learning and memory ability of subacute aging model mice injected with D-galactose,which may be related to its inhibitory effect on hippocampal oxidative stress and inflammatory stress.
9.Inhibitory effect of berberine on migration and invasion of human glioma T98G cells and its mechanism
Yuxue SUN ; Ziqiang LIU ; Hao WU ; Liming ZHAO ; Tao GAO ; Haiyan HUANG ; Chaoyue LI
Journal of Jilin University(Medicine Edition) 2024;50(1):50-57
Objective:To discuss the regulatory effect of berberine(BBR)on fatty acids in the human glioma T98G cells and its effect on the cell proliferation,migration,and invasion,and to clarify its potential mechanism.Methods:The T98G cells at logarithmic growth phase were divided into control group and different concentrations(25,50,and 100 mg·L-1)of BBR groups.Cell wound healing assay was used to detect the migration rates of the cells in various groups;Transwell chamber assay was used to detect the invasion rates of the cells in various groups.The T98G cells at logarithmic growth phase were divided into control group and 100 mg·L-1 BBR group,and Mass spectrometry was used to detect the fatty acid contents in the cells in two groups.The T98G cells at logarithmic growth phase were divided into control group and different concentrations(50,100,and 150 mg·L-1)of BBR groups;Western blotting method was used to detect the expression levels of phosphatidylinositol 3-kinase(PI3K),phosphorylated PI3K(p-PI3K),protein kinase B(AKT),phosphorylated AKT(p-AKT),sterol regulatory element-binding protein 1(SREBP-1),and fatty acid synthase(FASN)in the cells in various groups.The expression of FASN was suppressed by gene silencing technology,and the T98G cells at logarithmic growth phase were divided into control group,shFASN1 group,and shFASN2 group.Western blotting method was used to detect the expression levels of FASN protein in the cells in various groups;clone formation assay was used to detect the clone formation of the cells in various groups;cell wound healing assay was used to detect the migration rates of the cells in various groups.Results:Compared with control group,the migration rates and invasion rates of the cells in different concentrations of BBR groups were decreased in a concentration-dependent manner(P<0.01),and the fatty acid content in the cells in 100 mg·L-1 BBR group was significantly decreased(P<0.01).Compared with control group,the expression levels of p-PI3K,p-AKT,SREBP-1,and FASN proteins in the cells in 150 mg·L-1 BBR group were significantly decreased(P<0.05 or P<0.01),and the expression level of SREBP-1 protein in the cells in 100 and 150 mg·L-1 BBR groups were significantly decreased(P<0.01).After suppression of FASN expression,compared with control group,the expression levels of FASN protein in the cells in shFASN1 and shFASN2 groups were significantly decreased(P<0.01),and the expression level of FASN protein in the cells in shFASN2 group was lower than that in shFASN1 group(P<0.05);compared with control group,the numbers of clone formation and migration rates of the cells in shFASN1 and shFASN2 groups were significantly decreased(P<0.01),and the migration rate of the cells in shFASN2 group was significantly lower than that in shFASN1 group(P<0.05).Conclusion:BBR interferes with fatty acid synthesis in the glioma T98G cells by reducing the expression of the PI3K/AKT/SREBP-1/FASN pathway related proteins,and decrease their migration and invasion capabilities.
10.Exploration of Anti-depression Mechanism of Kai-Xin-San via Regulation of Neurogenesis of Hippocampus on Chronic Unpredictable Mild Stress Induced Mice
Jiani ZHENG ; Lingxin HUANG ; Yunqing LU ; Xuan LI ; Yang CHEN ; Jiaxiang TONG ; Ziqiang ZHU ; Jinao DUAN ; Lejun LI ; Yue ZHU
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(1):19-30
Objective To explore the anti-depression mechanism of Kai-Xin-San(KXS)via regulation of neurogenesis in hippocampus of depression-like mice.Methods The extracts of KXS were prepared and the anti-depression effects of KXS were evaluated by behavioral tests on chronic unpredictable mild stress(CUMS)induced depression-like mice.Evaluating depression-like behavior in CUMS mice through sucrose preference test,forced swimming test,tail suspension test,and other methods.Neurogenesis in hippocampus were determined by immunofluorescence assay.In addition,effects of KXS on regulating nestin expression and Wnt/b-catenin signaling pathway were explored by western blotting analysis.Amounts of cortisol,corticotropin-releasing factor(CRF),adrenocorticotropic hormone(ACTH),brain-derived neurotrophic factor(BDNF)and nerve growth factor(NGF)were determined by ELISA tests.Mouse primary neural stem cells(NSC)was used to evaluate the effect of KXS on promoting its proliferation by immunofluorescence assay.In addition,effects of KXS on regulating nestin and Wnt/β-catenin signaling pathway were also explored by Western blotting analysis.Results KXS significantly ameliorated the depression-like behaviors in presence of increased sucrose preference rate and decreased immobile time of tail suspension and forced swimming.KXS significantly promoted the neurogenesis in the hippocampus and expressions of nestin,reduced the expressions of cortisol,CRF,ACTH,increased the expressions of BDNF,NGF,and regulated Wnt/β-catenin signaling pathway.KXS also promoted the proliferation of NSCs and expressions of nestin,enhanced the translocation of b-catenin into nucleus,and regulated the expressions of proteins of Wnt/β-catenin signaling pathway.Conclusion KXS promoted neurogenesis in hippocampus and regulated Wnt/β-catenin pathway,which might contribute to its antidepressant effect.

Result Analysis
Print
Save
E-mail