1.Csde1 Mediates Neurogenesis via Post-transcriptional Regulation of the Cell Cycle.
Xiangbin JIA ; Wenqi XIE ; Bing DU ; Mei HE ; Jia CHEN ; Meilin CHEN ; Ge ZHANG ; Ke WANG ; Wanjing XU ; Yuxin LIAO ; Senwei TAN ; Yongqing LYU ; Bin YU ; Zihang ZHENG ; Xiaoyue SUN ; Yang LIAO ; Zhengmao HU ; Ling YUAN ; Jieqiong TAN ; Kun XIA ; Hui GUO
Neuroscience Bulletin 2025;41(11):1977-1990
Loss-of-function variants in CSDE1 have been strongly linked to neuropsychiatric disorders, yet the precise role of CSDE1 in neurogenesis remains elusive. In this study, we demonstrate that knockout of Csde1 during cortical development in mice results in impaired neural progenitor proliferation, leading to abnormal cortical lamination and embryonic lethality. Transcriptomic analysis revealed that Csde1 upregulates the transcription of genes involved in the cell cycle network. Applying a dual thymidine-labelling approach, we further revealed prolonged cell cycle durations of neuronal progenitors in Csde1-knockout mice, with a notable extension of the G1 phase. Intersection with CLIP-seq data demonstrated that Csde1 binds to the 3' untranslated region (UTR) of mRNA transcripts encoding cell cycle genes. Particularly, we uncovered that Csde1 directly binds to the 3' UTR of mRNA transcripts encoding Cdk6, a pivotal gene in regulating the transition from the G1 to S phases of the cell cycle, thereby maintaining its stability. Collectively, this study elucidates Csde1 as a novel regulator of Cdk6, sheds new light on its critical roles in orchestrating brain development, and underscores how mutations in Csde1 may contribute to the pathogenesis of neuropsychiatric disorders.
Animals
;
Neurogenesis/genetics*
;
Cell Cycle/genetics*
;
Mice, Knockout
;
Mice
;
Neural Stem Cells/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Cyclin-Dependent Kinase 6/genetics*
;
Cell Proliferation
;
3' Untranslated Regions
;
Cerebral Cortex/embryology*
;
RNA-Binding Proteins
;
Mice, Inbred C57BL
2.Statistical design and application of clinical trials with small sample sizes for rare diseases
Yuan GAO ; Zihang ZHONG ; Mengyi LU ; Feng CHEN
Chinese Journal of Epidemiology 2024;45(12):1700-1704
Due to the limited number of cases, conducting large-scale clinical trials for rare diseases is challenging. This review introduces several small sample statistical designs tailored for rare diseases, including crossover design, n-of-1 design, randomized placebo-phase design, randomized withdrawal design, group sequential design, and adaptive design. It discusses the advantages, disadvantages, and application scenarios of these designs. Additionally, it explores the benefits of Bayes decision-making in clinical trials for rare diseases. The aim is to provide a reference for designing and implementing small sample clinical trials for rare diseases.
3.A new perspective of triptolide-associated hepatotoxicity: the relevance of NF- B and NF- B-mediated cellular FLICE-inhibitory protein.
Ziqiao YUAN ; Zihang YUAN ; Muhammad HASNAT ; Haoran ZHANG ; Peishi LIANG ; Lixin SUN ; Zhenzhou JIANG ; Luyong ZHANG
Acta Pharmaceutica Sinica B 2020;10(5):861-877
Previously, we proposed a new perspective of triptolide (TP)-associated hepatotoxicity: liver hypersensitivity upon lipopolysaccharide (LPS) stimulation. However, the mechanisms for TP/LPS-induced hepatotoxicity remained elusive. The present study aimed to clarify the role of LPS in TP/LPS-induced hepatotoxicity and the mechanism by which TP induces liver hypersensitivity upon LPS stimulation. TNF- inhibitor, etanercept, was injected intraperitoneally into mice to investigate whether induction of TNF- by LPS participated in the liver injury induced by TP/LPS co-treatment. Mice and hepatocytes pretreated with TP were stimulated with recombinant TNF- to assess the function of TNF- in TP/LPS co-treatment. Additionally, time-dependent NF-B activation and NF-B-mediated pro-survival signals were measured and . Finally, overexpression of cellular FLICE-inhibitory protein (FLIP), the most potent NF-B-mediated pro-survival protein, was measured and to assess its function in TP/LPS-induced hepatotoxicity. Etanercept counteracted the toxic reactions induced by TP/LPS. TP-treatment sensitized mice and hepatocytes to TNF-, revealing the role of TNF- in TP/LPS-induced hepatotoxicity. Mechanistic studies revealed that TP inhibited NF-B dependent pro-survival signals, especially FLIP, induced by LPS/TNF-. Moreover, overexpression of FLIP alleviated TP/LPS-induced hepatotoxicity and TP/TNF--induced apoptosis . Mice and hepatocytes treated with TP were sensitive to TNF-, which was released from LPS-stimulated immune cells. These and other results show that the TP-induced inhibition of NF-B-dependent transcriptional activity and FLIP production are responsible for liver hypersensitivity.

Result Analysis
Print
Save
E-mail