1. Lycium barbarian seed oil activates Nrf2/ARE pathway to reduce oxidative damage in testis of subacute aging rats
Rui-Ying TIAN ; Wen-Xin MA ; Zi-Yu LIU ; Hui-Ming MA ; Sha-Sha XING ; Na HU ; Chang LIU ; Biao MA ; Jia-Yang LI ; Hu-Jun LIU ; Chang-Cai BAI ; Dong-Mei CHEN
Chinese Pharmacological Bulletin 2024;40(3):490-498
Aim To explore the effects of Lycium berry seed oil on Nrf2/ARE pathway and oxidative damage in testis of subacute aging rats. Methods Fifty out of 60 male SD rats, aged 8 weeks, were subcutaneously injected with 125 mg • kg"D-galactosidase in the neck for 8 weeks to establish a subacute senescent rat model. The presence of senescent cells was observed using P-galactosidase ((3-gal), while testicular morphology was examined using HE staining. Serum levels of testosterone (testosterone, T), follicle-stimulating hormone ( follicle stimulating hormone, FSH ) , luteinizing hormone ( luteinizing hormone, LH ) , superoxide dis-mutase ( superoxide dismutase, SOD ) , glutathione ( glutathione, GSH) and malondialdehyde ( malondial-dehyde, MDA) were measured through ELISA, and the expressions of factors related to aging, oxidative damage, and the Nrf2/ARE pathway were assessed via immunohistochemical analysis and Western blotting. Results After successfully identifying the model, the morphology of the testis was improved and the intervention of Lycium seed oil led to a down-regulation in the expression of [3-gal and -yH2AX. The serum levels of SOD, GSH, T, and FSH increased while MDA and LH decreased (P 0. 05) . Additionally, there was an up-regulated expression of Nrf2, GCLC, NQOl, and SOD2 proteins in testicular tissue ( P 0. 05 ) and nuclear expression of Nrf2 in sertoli cells. Conclusion Lycium barbarum seed oil may reduce oxidative damage in testes of subacute senescent rats by activating the Nrf2/ARE signaling pathway.
2.Effect of type of carrier material on the in vitro properties of solid dispersions of progesterone
Jing-nan QUAN ; Yi CHENG ; Jing-yu ZHOU ; Meng LI ; Zeng-ming WANG ; Nan LIU ; Zi-ming ZHAO ; Hui ZHANG ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2024;59(3):735-742
This study investigated the effect of different carrier materials on the
3.Mechanism of salvianolic acid B protecting H9C2 from OGD/R injury based on mitochondrial fission and fusion
Zi-xin LIU ; Gao-jie XIN ; Yue YOU ; Yuan-yuan CHEN ; Jia-ming GAO ; Ling-mei LI ; Hong-xu MENG ; Xiao HAN ; Lei LI ; Ye-hao ZHANG ; Jian-hua FU ; Jian-xun LIU
Acta Pharmaceutica Sinica 2024;59(2):374-381
This study aims to investigate the effect of salvianolic acid B (Sal B), the active ingredient of Salvia miltiorrhiza, on H9C2 cardiomyocytes injured by oxygen and glucose deprivation/reperfusion (OGD/R) through regulating mitochondrial fission and fusion. The process of myocardial ischemia-reperfusion injury was simulated by establishing OGD/R model. The cell proliferation and cytotoxicity detection kit (cell counting kit-8, CCK-8) was used to detect cell viability; the kit method was used to detect intracellular reactive oxygen species (ROS), total glutathione (t-GSH), nitric oxide (NO) content, protein expression levels of mitochondrial fission and fusion, apoptosis-related detection by Western blot. Mitochondrial permeability transition pore (MPTP) detection kit and Hoechst 33342 fluorescence was used to observe the opening level of MPTP, and molecular docking technology was used to determine the molecular target of Sal B. The results showed that relative to control group, OGD/R injury reduced cell viability, increased the content of ROS, decreased the content of t-GSH and NO. Furthermore, OGD/R injury increased the protein expression levels of dynamin-related protein 1 (Drp1), mitofusions 2 (Mfn2), Bcl-2 associated X protein (Bax) and cysteinyl aspartate specific proteinase 3 (caspase 3), and decreased the protein expression levels of Mfn1, increased MPTP opening level. Compared with the OGD/R group, it was observed that Sal B had a protective effect at concentrations ranging from 6.25 to 100 μmol·L-1. Sal B decreased the content of ROS, increased the content of t-GSH and NO, and Western blot showed that Sal B decreased the protein expression levels of Drp1, Mfn2, Bax and caspase 3, increased the protein expression level of Mfn1, and decreased the opening level of MPTP. In summary, Sal B may inhibit the opening of MPTP, reduce cell apoptosis and reduce OGD/R damage in H9C2 cells by regulating the balance of oxidation and anti-oxidation, mitochondrial fission and fusion, thereby providing a scientific basis for the use of Sal B in the treatment of myocardial ischemia reperfusion injury.
4.Progress in Clinical Research and Experimental Study of Danggui Shaoyao Powder in the Treatment of Chronic Pelvic Inflammatory Disease
Zi-Yi FENG ; Jia-Jun LIU ; Lan WANG ; Wan-Ying CHEN ; Jie-Ming HUANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(4):1091-1096
Chronic pelvic inflammatory disease(CPID)is a common chronic inflammatory disease in women,and has a long course and is easy to relapse.Danggui Shaoyao Powder is from Jin Gui Yao Lve(Synopsis of the Golden Chamber),which was a commonly-used formula for the treatment of women's abdominal pain in ancient medical records.It is now often used in the treatment of CPID and has achieved satisfactory therapeutic effect.The article summarizes and analyzes the achievements in the clinical research and experimental study of Danggui Shaoyao Powder in the treatment of CPID over the past 10 years,and invesigates the clinical efficacy of Danggui Shaoyao Powder in the treatment of CPID and its therapeutic mechanism.In the field of clinical studies,Danggui Shaoyao Powder for the treatment of CPID was used by modification,or alone,or in combination with antibiotics and Chinese medicine external treatment,and its combined use was effective on significantly improving the indicators of inflammatory response and immune function,alleviating the clinical signs and symptoms such as pain,and did not increase the incidence of adverse reactions compared with the application of western medicines alone.In the field of experimental studies,Danggui Shaoyao Powder played the therapeutic role in CPID by decreasing the adhesion of endothelial cells,regulating the degradation of extracellular matrix,improving the level of inflammatory factors,and down-regulating the expression of proteins related to the nuclear factor κB(NF-κB)pathway.
5.Epigenetic Mechanisms of Methamphetamine Addiction
Ming-Xin LIU ; Zi-Zhen SI ; Yu LIU
Progress in Biochemistry and Biophysics 2024;51(4):873-880
Methamphetamine (METH) is a powerful stimulant drug that can cause addiction and serious health problems. It is one of the most widely abused drugs in the world. However, the mechanisms of how METH affects the brain and leads to addiction are still unclear, and there are no effective treatments for METH addiction in clinical practice. Therefore, it is important to explore the new addiction mechanisms and treatment strategies of METH. METH addiction is a complex and chronic brain disorder that involves multiple brain regions and neurotransmitter systems. Neurotransmitters are chemical messengers that transmit signals between neurons (nerve cells) in the brain. Some of the main neurotransmitters involved in METH addiction are dopamine (DA), glutamate (Glu), norepinephrine (NE), and serotonin (SNRIS). These neurotransmitters regulate various aspects of brain function, such as reward, reinforcement, motivation, cognition, emotion, and behavior. When a person takes METH, it causes a surge of these neurotransmitters in the brain, especially in the prefrontal cortex (mPFC), ventral tegmental area (VTA), and nucleus accumbens (NAc). These brain regions form a circuit called the mesocorticolimbic system, which is responsible for mediating the rewarding and reinforcing effects of drugs and natural stimuli. The increased levels of neurotransmitters in this circuit make the person feel euphoric, alert, confident, and energetic. However, repeated or chronic use of METH can also cause negative effects, such as anxiety, paranoia, psychosis, depression, and cognitive impairment. The effects of METH on the brain are not only due to the changes in neurotransmitter levels, but also to the changes in gene expression. Gene expression is the process by which genes are turned on or off to produce proteins that perform various functions in the cells. Gene expression can be influenced by environmental factors, such as drugs, stress, diet, etc. One way that environmental factors can affect gene expression is through epigenetic mechanisms. Epigenetics is a branch of genetics that studies the heritable changes in gene expression that are not caused by changes in DNA sequence. Epigenetic mechanisms include histone modifications, DNA methylation, and non-coding RNA regulation. These mechanisms can modulate the chromatin structure and accessibility, thereby affecting the transcriptional activity of genes. Chromatin is a complex of DNA and proteins that forms the chromosomes in the nucleus of the cell. The chromatin structure can be altered by adding or removing chemical groups to histones (proteins that wrap around DNA) or DNA itself. These chemical groups can either activate or repress gene expression by changing the affinity of transcription factors (proteins that bind to DNA and initiate transcription) or other regulatory molecules. Non-coding RNAs are RNA molecules that do not code for proteins but can regulate gene expression by interacting with DNA, RNA, or proteins. Epigenetic mechanisms provide a link between environmental stimuli and gene expression, and play an important role in various physiological and pathological processes, including drug addiction. Recent studies have shown that epigenetic mechanisms are involved in the regulation of neurotransmitter systems and neural plasticity in response to METH exposure. Neural plasticity is the ability of neurons to change their structure and function in response to experience or injury. Neural plasticity is essential for learning, memory, adaptation, and recovery. The expression of some genes related to METH addiction is altered by epigenetic modifications, such as histone acetylation, methylation, ubiquitination, and non-coding RNA regulation. These epigenetic changes may affect the synaptic function and morphology, neuronal connectivity, and circuitry formation in the brain regions implicated in METH addiction. Moreover, some epigenetic modifications may persist for a long time after METH withdrawal, suggesting that they may contribute to the development and maintenance of METH addiction. In this article, we review the current literature on the epigenetic mechanisms of METH addiction. We will first introduce METH and its pharmacological effects, and then discuss the epigenetic regulation of neurotransmitter systems and neural plasticity by METH. We will focus on the changes of histone, DNA, and RNA during METH addiction, and the possible causes and consequences of their relationship with METH addiction. We will also provide some perspectives on the potential applications of epigenetic interventions for METH addiction treatment.
6.NUDT5 promotes the growth, metastasis, and Warburg effect of IDH wild-type glioblastoma multiforme cells by upregulating TRIM47
Asian Pacific Journal of Tropical Biomedicine 2024;14(2):82-92
Objective: To explore the regulatory mechanism of NUDT5 in glioblastoma multiforme (GBM). Methods: GEPIA database was used to predict the expressions of NUDT5 and tripartite motif family proteins 47 (TRIM47) in GBM patients. RT-qPCR and Western blot analyses were performed to examine NUDT5 expression in GBM cells. LN-229 cell proliferation, migration as well as invasion were estimated by CCK- 8, colony formation, wound healing, and Transwell assays following interference with NUDT5. ECAR assay, L-lactic acid kit, glucose detection kit, and ATP detection kit were applied for the detection of glycolysis-related indexes. Co-immunoprecipitation experiment was carried out to verify the relationship between NUDT5 and TRIM47. Results: GEPIA database showed that NUDT5 expression was significantly increased in GBM patients. Inhibiting the expression of NUDT5 in GBM cells significantly suppressed the viability, proliferation, invasion, migration, and glycolysis of GBM cells. Moreover, TRIM47 was highly expressed in GBM cells and interacted with NUDT5. Overexpression of TRIM47 partially reversed the inhibitory effect of NUDT5 downregulation on the proliferation, metastasis, and glycolysis of GBM cells. Conclusions: NUDT5 promotes the growth, metastasis, and Warburg effect of GBM cells by upregulating TRIM47. Both NUDT5 and TRIM47 can be used as targets for GMB treatment.
7.Assessment of respiratory protection competency of staff in healthcare facilities
Hui-Xue JIA ; Xi YAO ; Mei-Hua HU ; Bing-Li ZHANG ; Xin-Ying SUN ; Zi-Han LI ; Ming-Zhuo DENG ; Lian-He LU ; Jie LI ; Li-Hong SONG ; Jian-Yu LU ; Xue-Mei SONG ; Hang GAO ; Liu-Yi LI
Chinese Journal of Infection Control 2024;23(1):25-31
Objective To understand the respiratory protection competency of staff in hospitals.Methods Staff from six hospitals of different levels and characteristics in Beijing were selected,including doctors,nurses,medical technicians,and servicers,to conduct knowledge assessment on respiratory protection competency.According to exposure risks of respiratory infectious diseases,based on actual cases and daily work scenarios,content of respira-tory protection competency assessment was designed from three aspects:identification of respiratory infectious di-seases,transmission routes and corresponding protection requirements,as well as correct selection and use of masks.The assessment included 6,6,and 8 knowledge points respectively,with 20 knowledge points in total,all of which were choice questions.For multiple-choice questions,full marks,partial marks,and no mark were given respective-ly if all options were correct,partial options were correct and without incorrect options,and partial options were correct but with incorrect options.Difficulty and discrimination analyses on question of each knowledge point was conducted based on classical test theory.Results The respiratory protection competency knowledge assessment for 326 staff members at different risk levels in 6 hospitals showed that concerning the 20 knowledge points,more than 60%participants got full marks for 6 points,while the proportion of full marks for other questions was relatively low.Less than 10%participants got full marks for the following 5 knowledge points:types of airborne diseases,types of droplet-borne diseases,conventional measures for the prevention and control of healthcare-associated infec-tion with respiratory infectious diseases,indications for wearing respirators,and indications for wearing medical protective masks.Among the 20 knowledge questions,5,1,and 14 questions were relatively easy,medium,and difficult,respectively;6,1,4,and 9 questions were with discrimination levels of ≥0.4,0.30-0.39,0.20-0.29,and ≤0.19,respectively.Conclusion There is still much room for hospital staff to improve their respiratory protection competency,especially in the recognition of diseases with different transmission routes and the indications for wearing different types of masks.
8.Cloning and interacted protein identification of AGL12 gene from Lonicera macranthoides
Li-jun LONG ; Hui-jie ZENG ; Zhong-quan QIAO ; Xiao-ming WANG ; Chang-zhu LI ; Si-si LIU ; Ying-zi MA
Acta Pharmaceutica Sinica 2024;59(5):1458-1466
MADS-box protein family are important transcriptional regulatory factors in plant growth and development. The
9.Advances in crystal nucleation for amorphous drugs
Jie ZHANG ; Kang LI ; Zi-qing YANG ; Zi-han DING ; Sai-jun XIAO ; Zhi-ming YUE ; Li-mei CAI ; Jia-wen LI ; Ding KUANG ; Min-zhuo LIU ; Zhi-hong ZENG
Acta Pharmaceutica Sinica 2024;59(7):1962-1969
Amorphous solid dispersion (ASD) is one of the most effective formulation approaches to enhance the water solubility and oral bioavailability of poorly water-soluble drugs. However, maintenance of physical stability of amorphous drug is one of the main challenges in the development of ASD. Crystallization is a process of nucleation and crystal growth. The nucleation is the key factor that influences the physical stability of the ASD. However, a theoretical framework to describe the way to inhibit the nucleation of amorphous drug is not yet available. We reviewed the methods and theories of nucleation for amorphous drug. Meanwhile, we also summarized the research progress on the mechanism of additives influence on nucleation and environmental factors on nucleation. This review aims to enhance the better understanding mechanism of nucleation of amorphous drug and controlling over the crystal nucleation during the ASD formulation development.
10.Synthesis and anti-tumor activity of pyrazole pyrimidine PI3Kγ /δ inhibitors
Mao-qing DENG ; Feng-ming ZOU ; Zi-ping QI ; Chun WANG ; Kai-li LONG ; Qing-wang LIU ; Ao-li WANG ; Jing LIU ; Xiao-fei LIANG
Acta Pharmaceutica Sinica 2024;59(7):2041-2052
PI3K

Result Analysis
Print
Save
E-mail