1.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Mechanism of salvianolic acid B protecting H9C2 from OGD/R injury based on mitochondrial fission and fusion
Zi-xin LIU ; Gao-jie XIN ; Yue YOU ; Yuan-yuan CHEN ; Jia-ming GAO ; Ling-mei LI ; Hong-xu MENG ; Xiao HAN ; Lei LI ; Ye-hao ZHANG ; Jian-hua FU ; Jian-xun LIU
Acta Pharmaceutica Sinica 2024;59(2):374-381
This study aims to investigate the effect of salvianolic acid B (Sal B), the active ingredient of Salvia miltiorrhiza, on H9C2 cardiomyocytes injured by oxygen and glucose deprivation/reperfusion (OGD/R) through regulating mitochondrial fission and fusion. The process of myocardial ischemia-reperfusion injury was simulated by establishing OGD/R model. The cell proliferation and cytotoxicity detection kit (cell counting kit-8, CCK-8) was used to detect cell viability; the kit method was used to detect intracellular reactive oxygen species (ROS), total glutathione (t-GSH), nitric oxide (NO) content, protein expression levels of mitochondrial fission and fusion, apoptosis-related detection by Western blot. Mitochondrial permeability transition pore (MPTP) detection kit and Hoechst 33342 fluorescence was used to observe the opening level of MPTP, and molecular docking technology was used to determine the molecular target of Sal B. The results showed that relative to control group, OGD/R injury reduced cell viability, increased the content of ROS, decreased the content of t-GSH and NO. Furthermore, OGD/R injury increased the protein expression levels of dynamin-related protein 1 (Drp1), mitofusions 2 (Mfn2), Bcl-2 associated X protein (Bax) and cysteinyl aspartate specific proteinase 3 (caspase 3), and decreased the protein expression levels of Mfn1, increased MPTP opening level. Compared with the OGD/R group, it was observed that Sal B had a protective effect at concentrations ranging from 6.25 to 100 μmol·L-1. Sal B decreased the content of ROS, increased the content of t-GSH and NO, and Western blot showed that Sal B decreased the protein expression levels of Drp1, Mfn2, Bax and caspase 3, increased the protein expression level of Mfn1, and decreased the opening level of MPTP. In summary, Sal B may inhibit the opening of MPTP, reduce cell apoptosis and reduce OGD/R damage in H9C2 cells by regulating the balance of oxidation and anti-oxidation, mitochondrial fission and fusion, thereby providing a scientific basis for the use of Sal B in the treatment of myocardial ischemia reperfusion injury.
7.Exploration of the Acupoint Selection Rules of Acupuncture for the Treatment of Tic Disorders in Children Based on Data Mining Techniques
Shan-Hong WU ; Zi-Han GONG ; Yan WANG ; Yang GAO ; Yi-Ming YUAN ; Ming-Yue ZHAO ; Zi-Wei ZHANG ; Tian-Yi LI ; Fei PEI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(4):1083-1090
Objective To analyze the acupoint selection rules of acupuncture for the treatment of tic disorders in children based on data mining techniques.Methods A computerized search was conducted for the clinical research literature on acupuncture treatment of tic disorders in children included in the CNKI,Wanfang,VIP,SinoMed,and PubMed databases from January 1992 to December 2022.A database was established by Excel 2019 to count the commonly used treatment methods and analyze the high-frequency application methods acupuncture(high-frequency acupoints,channel entry of acupoints,acupoint association rules,and acupoint clustering),auricular point seed-pressing(high-frequency auricular points,and acupoint association rules),and the high frequency division of cluster needling of scalp point.Results A total of 190 valid literature articles were included,involving 270 acupuncture prescriptions;among them,184 acupoints were counted in the acupuncture method,with a total application frequency of 1 906 times,and the high-frequency application of the acupoints in descending order were Baihui(DU20),Taichong(LR3),Fengchi(GB20),Hegu(LI4),Sanyinjiao(SP6),Neiguan(PC6),Shenmen(HT7),Zusanli(ST36),Yintang(EX-HN3),Sishencong(EX-HN1);and the high-frequency meridians were governor vessol,foot taiyang stomach meridian,foot taiyang stomach meridian,foot shaoyang gallbladder meridian,hand taiyang large intestine meridian,foot taiyang bladder meridian,foot jueyin gallbladder meridian;three sets of strong association rules and five clusters of acupoints were analyzed by SPSS modeler 18.0 and IBM SPSS Statistics 26.0 software.There were 29 acupoints of auricular point seed-pressing,application total frequency was 206 times,high-frequency application of auricular points in descending order of Shenmen(HT7),liver,heart,subcortex,kidney;four groups of acupoint strong association rules were obtained through the analysis of SPSS modeler 18.0 software.A total of 14 zones were involved in the application of cephalic acupoint plexus zoning,of which the high-frequency zones were parietal anterior temporal diagonal,parietal parietal 1,and chorea tremor control zone.Conclusion Acupuncture treatment of tic disorders in children,according to its pathogenesis(liver hyperactivity,kidney depletion,spleen deficiency,phlegm disturbance,etc.)and tic site,select acupoints compatibility,and mostly choose yang meridian acupoints,which is related to the nature and treatment characteristics of wind pathogen.Children's tic disorders are closely related to emotional disorders,therefore acupuncture and auricular acupoints all emphasize the method of soothing the liver and clearing the heart,and regulating the emotional state.Cluster needling of scalp point mostly used parietal temporal anterior oblique line,parietal 1 line,and dance tremor control area for the treatment of tic disorders.For children,auricular point seed-pressing and cluster needling of scalp point has the minimun of pain,the effect of treatment is long,and it is not easy to have dangerous situations such as bent needle,broken needle and so on.
8.Transcutaneous Electrical Acupoint Stimulation Promotes PGC-1α Mediated Mitochondrial Biogenesis and Antioxidant Stress to Protect Cognitive Function in Vascular Dementia Rats
Ji-Liang KANG ; Ke HU ; Jun-Yue LU ; Zi-Wei HU ; Biao-Ping XU ; Xiao-Mao LI ; Jun-Jie ZHOU ; Yu JIN ; Min TANG ; Rong XU ; You-Liang WEN
Progress in Biochemistry and Biophysics 2024;51(5):1191-1202
ObjectiveThe purpose of this study was to investigate the effects of transcutaneous electrical acupoint stimulation (TEAS) on cognitive function of vascular dementia (VD) rats and its mechanism. MethodsVD rat model was established by modified two-vessel occlusion (2-VO). After modeling, TEAS and electroacupuncture (EA) were used to stimulate Baihui and Zusanli points of rats respectively for 14 d. After treatment, novel object recognition test, Morris water maze test, and Y maze test were used to evaluate the spatial memory and learning ability of rats. Hematoxylin and eosin staining was used to observe the morphology of hippocampal neurons. Transmission electron microscopy was used to observe the ultrastructure of hippocampal mitochondria. Enzyme-linked immunosorbent assay kits were used to detected the levels of SOD, CAT, GSH-Px, MDA and ROS in serum of rats. Western blot was used to detect the expression of PGC-1α, TFAM, HO-1, NQO1 proteins in the hippocampus, Keap1 protein in the cytoplasm and Nrf2, NRF1 proteins in the nucleus. ResultsAfter treatment for 14 d, compared to the model group, the escape latency of VD rats decreased, while the discrimination index, the times of rats crossing the original platform area, the residence time in the original platform quadrant, and the percentage of alternation increased. TEAS can improve the structure of hippocampal neurons and mitochondria of VD rats, showing that neurons were arranged more regularly and distributed more evenly, nuclear membrane and nucleoli were clearer, and mitochondrial swelling were reduced, mitochondrial matrix density were increased, and mitochondrial cristae were more obvious. The levels of SOD, GSH-Px and CAT in serum increased significantly, while the concentration of MDA and ROS decreased. TEAS also up-regulated the expression levels of PGC-1α TFAM, NQO1 and HO-1 proteins in the hippocampus and Nrf2, NRF1 proteins in the nucleus, but down-regulated the Keap1 protein in the cytoplasm. ConclusionTEAS can improve cognition, hippocampal neurons and mitochondrial structure of VD rats, and the effect is better than EA. The mechanism may be the activation of PGC-1α mediated mitochondrial biogenesis and antioxidant stress, which also provides a potential therapeutic technology and experimental basis for the treatment of VD.
9.Research and Application of Nanozymes in Disease Treatment
Hang LIU ; Yi-Xuan LI ; Zi-Tong QIN ; Jia-Wen ZHAO ; Yue-Jie ZHOU ; Xiao-Fei LIU
Progress in Biochemistry and Biophysics 2024;51(3):575-589
Nanozyme is novel nanoparticle with enzyme-like activity, which can be classified into peroxidase-like nanozyme, catalase-like nanozyme, superoxide dismutase-like nanozyme, oxidase-like nanozyme and hydrolase-like nanozyme according to the type of reaction they catalyze. Since researchers first discovered Fe3O4 nanoparticles with peroxidase-like activity in 2007, a variety of nanoparticles have been successively found to have catalytic activity and applied in bioassays, inflammation control, antioxidant damage and tumor therapy, playing a key role in disease diagnosis and treatment. We summarize the use of nanozymes with different classes of enzymatic activity in the diagnosis and treatment of diseases and describe the main factors influencing nanozyme activity. A Mn-based peroxidase-like nanozyme that induces the reduction of glutathione in tumors to produce glutathione disulfide and Mn2+, which induces the production of reative oxygen species (ROS) in tumor cells by breaking down H2O2 in physiological media through Fenton-like action, thereby inhibiting tumor cell growth. To address the limitation of tumor tissue hypoxia during photodynamic tumor therapy, the effect of photodynamic therapy is significantly enhanced by using hydrogen peroxide nanozymes to catalyze the production of oxygen from H2O2. In pathological states, where excess superoxide radicals are produced in the body, superoxide dismutase-like nanozymes are able to selectively regulate intracellular ROS levels, thereby protecting normal cells and slowing down the degradation of cellular function. Based on this principle, an engineered nanosponge has been designed to rapidly scavenge free radicals and deliver oxygen in time to save nerve cells before thrombolysis. Starvation therapy, in which glucose oxidase catalyzes the hydrolysis of glucose to gluconic acid and hydrogen peroxide in cancer cells with the involvement of oxygen, attenuates glycolysis and the production of intermediate metabolites such as nucleotides, lipids and amino acids, was used to synthesize an oxidase-like nanozyme that achieved effective inhibition of tumor growth. Furthermore, by fine-tuning the Lewis acidity of the metal cluster to improve the intrinsic activity of the hydrolase nanozyme and providing a shortened ligand length to increase the density of its active site, a hydrolase-like nanozyme was successfully synthesized that is capable of cleaving phosphate bonds, amide bonds, glycosidic bonds and even biofilms with high efficiency in hydrolyzing the substrate. All these effects depend on the size, morphology, composition, surface modification and environmental media of the nanozyme, which are important aspects to consider in order to improve the catalytic efficiency of the nanozyme and have important implications for the development of nanozyme. Although some progress has been made in the research of nanozymes in disease treatment and diagnosis, there are still some problems, for example, the catalytic rate of nanozymes is still difficult to reach the level of natural enzymes in vivo, and the toxic effects of some heavy metal nanozymes material itself. Therefore, the construction of nanozyme systems with multiple functions, good biocompatibility and high targeting efficiency, and their large-scale application in diagnosis and treatment is still an urgent problem to be solved. (1) To improve the selectivity and specificity of nanozymes. By using antibody coupling, the nanoparticles are able to specifically bind to antigens that are overexpressed in certain cancer cells. It also significantly improves cellular internalization through antigen-mediated endocytosis and enhances the enrichment of nanozymes in target tissues, thereby improving targeting during tumor therapy. Some exogenous stimuli such as laser and ultrasound are used as triggers to control the activation of nanozymes and achieve specific activation of nanozyme. (2) To explore more practical and safer nanozymes and their catalytic mechanisms: biocompatible, clinically proven material molecules can be used for the synthesis of nanoparticles. (3) To solve the problem of its standardization and promote the large-scale clinical application of nanozymes in biomonitoring. Thus, it can go out of the laboratory and face the market to serve human health in more fields, which is one of the future trends of nanozyme development.
10.Development and Application of Detection Methods for Capture and Transcription Elongation Rate of Bacterial Nascent RNA
Yuan-Yuan LI ; Yu-Ting WANG ; Zi-Chun WU ; Hao-Xuan LI ; Ming-Yue FEI ; Dong-Chang SUN ; O. Claudio GUALERZI ; Attilio FABBRETTI ; Anna Maria GIULIODORI ; Hong-Xia MA ; Cheng-Guang HE
Progress in Biochemistry and Biophysics 2024;51(9):2249-2260
ObjectiveDetection and quantification of RNA synthesis in cells is a widely used technique for monitoring cell viability, health, and metabolic rate.After exposure to environmental stimuli, both the internal reference gene and target gene would be degraded. As a result, it is imperative to consider the accurate capture of nascent RNA and the detection of transcriptional levels of RNA following environmental stimulation. This study aims to create a Click Chemistry method that utilizes its property to capture nascent RNA from total RNA that was stimulated by the environment. MethodsThe new RNA was labeled with 5-ethyluridine (5-EU) instead of uracil, and the azido-biotin medium ligand was connected to the magnetic sphere using a combination of “Click Chemistry” and magnetic bead screening. Then the new RNA was captured and the transcription rate of 16S rRNA was detected by fluorescence molecular beacon (M.B.) and quantitative reverse transcription PCR (qRT-PCR). ResultsThe bacterial nascent RNA captured by “Click Chemistry” screening can be used as a reverse transcription template to form cDNA. Combined with the fluorescent molecular beacon M.B.1, the synthesis rate of rRNA at 37℃ is 1.2 times higher than that at 15℃. The 16S rRNA gene and cspI gene can be detected by fluorescent quantitative PCR,it was found that the measured relative gene expression changes were significantly enhanced at 25℃ and 16℃ when analyzed with nascent RNA rather than total RNA, enabling accurate detection of RNA transcription rates. ConclusionCompared to other article reported experimental methods that utilize screening magnetic columns, the technical scheme employed in this study is more suitable for bacteria, and the operation steps are simple and easy to implement, making it an effective RNA capture method for researchers.

Result Analysis
Print
Save
E-mail