1.The Mechanism of Exercise Regulating Intestinal Flora in The Prevention and Treatment of Depression
Lei-Zi MIN ; Jing-Tong WANG ; Qing-Yuan WANG ; Yi-Cong CUI ; Rui WANG ; Xin-Dong MA
Progress in Biochemistry and Biophysics 2025;52(6):1418-1434
Depression, a prevalent mental disorder with significant socioeconomic burdens, underscores the urgent need for safe and effective non-pharmacological interventions. Recent advances in microbiome research have revealed the pivotal role of gut microbiota dysbiosis in the pathogenesis of depression. Concurrently, exercise, as a cost-effective and accessible intervention, has demonstrated remarkable efficacy in alleviating depressive symptoms. This comprehensive review synthesizes current evidence on the interplay among exercise, gut microbiota modulation, and depression, elucidating the mechanistic pathways through which exercise ameliorates depressive symptoms via the microbiota-gut-brain (MGB) axis. Depression is characterized by gut microbiota alterations, including reduced alpha and beta diversity, depletion of beneficial taxa (e.g., Bifidobacterium, Lactobacillus, and Coprococcus), and overgrowth of pro-inflammatory and pathogenic bacteria (e.g., Morganella, Klebsiella, and Enterobacteriaceae). Metagenomic analyses reveal disrupted metabolic functions in depressive patients, such as diminished synthesis of short-chain fatty acids (SCFAs), impaired tryptophan metabolism, and dysregulated bile acid conversion. For instance, Bifidobacterium longum deficiency correlates with reduced synthesis of neuroactive metabolites like homovanillic acid, while decreased Coprococcus abundance limits butyrate production, exacerbating neuroinflammation. Furthermore, elevated levels of indole derivatives from Clostridium species inhibit serotonin (5-HT) synthesis, contributing to depressive phenotypes. These dysbiotic profiles disrupt the MGB axis, triggering systemic inflammation, neurotransmitter imbalances, and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. Exercise exerts profound effects on gut microbiota composition, diversity, and metabolic activity. Longitudinal studies demonstrate that sustained aerobic exercise increases alpha diversity, enriches SCFA-producing genera (e.g., Faecalibacterium prausnitzii, Roseburia, and Akkermansia), and suppresses pathobionts (e.g., Desulfovibrio and Streptococcus). For example, a meta-analysis of 25 trials involving 1 044 participants confirmed that exercise enhances microbial richness and restores the Firmicutes/Bacteroidetes ratio, a biomarker of metabolic health. Notably, endurance training promotes Veillonella proliferation, which converts lactate into propionate, enhancing energy metabolism and delaying fatigue. Exercise also strengthens intestinal barrier integrity by upregulating tight junction proteins (e.g., ZO-1, occludin), thereby reducing lipopolysaccharide (LPS) translocation and systemic inflammation. However, excessive exercise may paradoxically diminish microbial diversity and exacerbate intestinal permeability, highlighting the importance of moderate intensity and duration. Exercise ameliorates depressive symptoms through multifaceted interactions with the gut microbiota, primarily via 4 interconnected pathways. First, exercise mitigates neuroinflammation by elevating anti-inflammatory SCFAs such as butyrate, which suppresses NF-κB signaling to attenuate microglial activation and oxidative stress in the hippocampus. Animal studies demonstrate that voluntary wheel running reduces hippocampal TNF‑α and IL-17 levels in stress-induced depression models, while fecal microbiota transplantation (FMT) from exercised mice reverses depressive behaviors by modulating the TLR4/NF‑κB pathway. Second, exercise regulates neurotransmitter dynamics by enriching GABA-producing Lactobacillus and Bifidobacterium, thereby counteracting neuronal hyperexcitability. Aerobic exercise also enhances the abundance of Lactobacillus plantarum and Streptococcus thermophilus, which facilitate 5-HT and dopamine synthesis. Clinical trials reveal that 12 weeks of moderate exercise increases fecal Coprococcus and Blautia abundance, correlating with improved 5-HT bioavailability and reduced depression scores. Third, exercise normalizes HPA axis hyperactivity by reducing cortisol levels and restoring glucocorticoid receptor sensitivity. In rodent models, chronic stress-induced corticosterone elevation is reversed by probiotic supplementation (e.g., Lactobacillus), which enhances endocannabinoid signaling and hippocampal neurogenesis. Furthermore, exercise upregulates brain-derived neurotrophic factor (BDNF) via microbial metabolites like butyrate, promoting histone acetylation and synaptic plasticity. FMT experiments confirm that exercise-induced microbiota elevates prefrontal BDNF expression, reversing stress-induced neuronal atrophy. Fourth, exercise reshapes microbial metabolic crosstalk, diverting tryptophan metabolism toward 5-HT synthesis instead of neurotoxic kynurenine derivatives. Butyrate inhibits indoleamine 2,3-dioxygenase (IDO), a key enzyme in the kynurenine pathway linked to depression. Concurrently, exercise-induced Akkermansia enrichment enhances mucin production, fortifies the gut barrier, and reduces LPS-driven neuroinflammation. Collectively, these mechanisms underscore exercise as a potent modulator of the microbiota-gut-brain axis, offering a holistic approach to alleviating depression through microbial and neurophysiological synergy. Current evidence supports exercise as a potent adjunct therapy for depression, with personalized regimens (e.g., aerobic, resistance, or yoga) tailored to individual microbiota profiles. However, challenges remain in optimizing exercise prescriptions (intensity, duration, and type) and integrating them with probiotics, prebiotics, or FMT for synergistic effects. Future research should prioritize large-scale randomized controlled trials to validate causality, multi-omics approaches to decipher MGB axis dynamics, and mechanistic studies exploring microbial metabolites as therapeutic targets. The authors advocate for a paradigm shift toward microbiota-centric interventions, emphasizing the bidirectional relationship between physical activity and gut ecosystem resilience in mental health management. In conclusion, this review underscores exercise as a multifaceted modulator of the gut-brain axis, offering novel insights into non-pharmacological strategies for depression. By bridging microbial ecology, neuroimmunology, and exercise physiology, this work lays a foundation for precision medicine approaches targeting the gut microbiota to alleviate depressive disorders.
2. Effect of quercetin's anti-breast cancer depending on presence of estrogen receptor via down-regulating long non-coding RNA MALAT-1 and its mechanism
Zi-Yi ZHAO ; Ming XIONGXIAO ; Cui-Wei ZHANG ; Ming XIONGXIAO ; Cui-Wei ZHANG ; Yu-Peng XIE ; Yi-Wen ZHANG
Chinese Pharmacological Bulletin 2024;40(3):499-505
Aim To investigate the molecular mechanism by which quercetin inhibits the malignant behavior of breast cancer cells. Methods Breast cancer cell lines MCF-7 and MB231 were used as the research models. Lentiviral transfection was employed to establish tumor cells with high expression of ERa and MAL-AT-1. The expression of MALAT-1 was assessed using RT-qPCR,and ERa expression was determined through Western blot. Subsequently, CCK-8 assay and colony formation assay were conducted to evaluate cell proliferation. PI staining and adenovirus transfection were performed to observe the inhibitory effects of quercetin on breast cancer cell proliferation. Results 17|3-es-tradiol ( E2 ) promoted the proliferation of MCF-7 breast cancer cells, while 5 jjunol L quercetin reversed the promoting effect of E2 on proliferation ( P 0. 05 ) . Quercetin had no effect on MB231 breast cancer cells. Overexpression of ERa significantly inhibited the pro-proliferative effect of E2 on MB231-ERa cells, and quercetin further suppressed this effect. Additionally , quercetin inhibited the expression of MALAT-1. However,this inhibitory effect was reversed by overexpression of MALAT-1, leading to enhanced cell proliferation , cell cycle progression, and clonal formation a-bility. Conclusions Quercetin exerts its anti-tumor effects on breast cancer cells by regulating MALAT-1, dependent on the presence of estrogen receptor. Quercetin shows potential as a therapeutic drug for breast cancer targeting the estrogen receptor.
3.Development and validity test of alcohol-related cognitive scale among adolescents based on health belief model
Xiao-Tao YAN ; Wen-Jie GUO ; Cai-Fang SHEN ; Zi-Yi CUI ; Jia-Qian WU ; Ling FANG ; Yu-Chen ZHAO ; Chen-Yu QIAN ; Yan-Qiu YU ; Pin-Pin ZHENG
Fudan University Journal of Medical Sciences 2024;51(4):465-472
Objective To develop a health belief model(HBM)based adolescent alcohol-related cognition scale to measure adolescent alcohol-related cognition and test its reliability and validity.Methods The adolescents'alcohol-related cognitive scale was developed based on HBM model.By using purposive sampling,three general high schools in Qingpu District,Shanghai were selected.One-third of the classes from grades 10 and 11 in each school were randomly selected,and the students from these classes were surveyed as the research subjects.Exploratory factor analysis and confirmatory factor analysis were used to analyze its reliability(internal consistency reliability and combination reliability)and validity(structural validity,convergent validity,discriminative validity and criterion validity).Results A total of 970 questionnaires were collected,of which 948 were valid,with an effective rate of 97.7%.The adolescents'alcohol-related cognitive scale contained 22 items.Five common factors were extracted from exploratory factor analysis,including perceived susceptibility,perceived severity,perceived benefits,perceived obstacles,and self-efficacy.The cumulative variance contribution rate reached 83.89%.The results of confirmatory factor analysis confirmed the overall fit of the model.The average variance extracted value(AVE)of each dimension was greater than 0.5,and the convergent validity of the model was ideal.The AVE square root of each dimension of the scale was greater than its correlation coefficient,indicating good discrimination validity.Cronbach's α coefficient of the total volume table was 0.892,indicating good overall reliability.Conclusion The adolescents'alcohol-related cognitive scale developed in this study has good reliability and validity,which can be used to measure adolescents'alcohol-related perceptions.
4.Advances of ceftazidime/avibactam in the treatment of carbapenem-resis-tant Klebsiella pneumoniae infection
Yuan-Qi ZHAO ; Ming-Jing CHENG ; Miao-Miao XIONG ; Min XIAO ; Xiu-Yu CUI ; Zi-Jian ZHOU ; Yi-Wei YU ; Wei-Dong ZHAO
Chinese Journal of Infection Control 2024;23(8):1047-1052
In recent years,the prevalence of carbapenem-resistant Klebsiella pneumoniae(CRKP)infection has become a global public health issue.Ceftazidime/avibactam(CAZ/AVI)has been approved as a novel antimicrobial agent for the treatment of healthcare-associated pneumonia/ventilator-associated pneumonia,bloodstream infection,infection after kidney transplantation,and severe infection combined with liver cirrhosis.However,the use of CAZ/AVI has also led to the emergence of drug-resistant strains.The major mechanisms of drug-resistance include over-expression of blaKPC gene,mutation of β-lactamase and amino acids at key sites,changes in cell permeability caused by loss of membrane porin,and over-expression of efflux pump.This article reviews the research progress of CAZ/AVI in the treatment of CRKP infection,providing reference for clinical diagnosis and treatment.
5.Mechanism of overexpression of lncRNA HAGLR promoting osteogenic differentiation of bone marrow mesenchymal stem cells in rats with tibial fracture
Wen WANG ; Xin-Yu CHEN ; Zi-Yi HUANG ; Yang-Liu DENG ; Hong-Wang CUI
Journal of Regional Anatomy and Operative Surgery 2024;33(6):472-478
Objective To study the expression of long noncoding RNA Homeobox D gene cluster antisense growth-associated long noncoding RNA(lncRNA HAGLR)and its downstream target genes in osteoporosis(OP)-tibial fracture(TF)rats,and to explore the effect and mechanism of lncRNA HAGLR on osteogenic differentiation of rat bone marrow mesenchymal stem cells(MSCs).Methods A total of 30 SD female rats were randomly divided into the sham group,the OP group and the OP-TF group,with 10 rats in each group.Serum alkaline phosphatase(ALP)and tartrate-resistant acid phosphatase(TRAP)levels of rats were detected by ELISA.Rats MSC cell line R7500 was induced by osteogenic differentiation induction medium and divided into the MSC group and the Osteogenic-MSC group.R7500 was individually transfected with pcDNA-HAGLR,pcDNA-NC,miR-19a-3p mimic,mimic negative control(NC mimic),miR-19a-3p inhibitor and negative control of miR-19a-3p inhibitor(NC inhibitor),and divided into corresponding groups.The dual luciferase gene report experiment was used to verify the targeting relationship between lncRNA HAGLR and miR-19a-3p and bone morphogenetic protein 2(BMP2)and miR-19a-3p.The expressions of lncRNA HAGLR and miR-19a-3p in each group were detected by qRT-PCR.The expressions of BMP2,ALP,collagen Ⅰ(COL-Ⅰ),osteocalcin(OCN),and osteopontin(OPN)were detected by Western blot.ALP staining and AR staining were used to detect the osteogenic differentiation ability of MSC.Results The serum ALP and TRAP levels in the OP group and the OP-TF group were higher than those in the sham group,and the differences were statistically significant(P<0.05).There was no significant difference in the expression levels of lncRNA HAGLR,miR-19a-3p or BMP2 of tibia tissue between the OP group and the sham group(P>0.05),while the expression levels of lncRNA HAGLR and BMP2 of tibia tissue in the OP-TF group were significantly lower than those in the sham group and the OP group(P<0.05),the expression level of miR-19a-3p of tibia tissue in the OP-TF group was higher than those in the sham group and the OP group(P<0.05).Compared with the MSC group,the expression level of lncRNA HAGLR in the Osteogenic-MSC group was significantly increased(P<0.05),while the expression of miR-19a-3p was decreased(P<0.05).The dual luciferase gene report experiment verified that lncRNA HAGLR has a targeting relationship with miR-19a-3p,and miR-19a-3p has a targeting relationship with BMP2.The expression level of miR-19a-3p in the pcDNA-HAGLR group was lower than that in the pcDNA-NC group(P<0.05).There was no significant difference in the expression level of lncRNA HAGLR between the miR-19a-3p mimic group and the NC mimic group(P>0.05).Compared with the NC mimic group,the expression level of BMP2 protein in the miR-19a-3p mimic group was decreased(P<0.05),while the expression level of miR-19a-3p was increased(P<0.05).The cells in the pcDNA-HAGLR group had stronger osteogenic differentiation ability and higher ALP activity than those in the pcDNA-NC group(P<0.05).The cells in the miR-19a-3p inhibitor group had stronger osteogenic differentiation ability and higher ALP activity than those in the NC inhibitor group(P<0.05).Conclusion The expression of lncRNA HAGLR and BMP2 is decreased and the expression of miR-19a-3p is increased in rats with tibial fracture.Overexpression of lncRNA HAGLR promotes osteogenic differentiation of rat MSCs by targeting the miR-19a-3p/BMP2 axis.
6.The RNA binding protein QKI can promote gastric cancer by regulating cleavage of EMT-related gene transcripts to form circRNAs
Yi-Shuang CUI ; Xuan ZHENG ; Ya-Nan WU ; Yi-Han YAO ; Jun WANG ; Zi-Qing LIU ; Guo-Gui SUN
Chinese Pharmacological Bulletin 2024;40(8):1462-1473
Aim To study the proliferation,invasion and migration ability of Quaking(QKI)in gastric cancer(GC)via elucidating the molecular mechanisms associated with QKI in the occurrence and development of GC through bioinformatics.Methods Differential expression analysis of QKI was performed across vari-ous human cancer samples by merging data from the TCGA and GTEx databases.The correlation was ana-lyzed between QKI protein expression and tumor muta-tion burden(TMB)score,microsatellite instability(MSI)score,and ESTIMATE score,and the correla-tion was also explored between QKI protein expression and overall survival(OS),disease free survival(DFS),and progression free survival(PFS).EMT related genes that could encode DECircRNAs were ob-tained through bioinformatics analysis to construct a QKI-EMT-circRNAs regulatory network.The differenti-ally expressed circRNAs and EMT related genes in TMK1 cells were verified.The proliferation,invasion and migration ability of the QKI was studied by using the knockdown system.Results QKI was differential-ly expressed in the vast majority of tumors and was closely related to TMB,MSI,and tumor microenviron-ment(TME);QKI emerged as a high-risk factor for predicting OS,DFS,and PFS in individuals with com-mon human cancers.QKI regulated the splicing of 6 EMT related gene transcripts to form eight circRNAs,all of which were significantly associated with the prog-nosis of gastric cancer patients.Cell experiments showed that compared to normal gastric epithelial cells,only hsa_ccirc_0004015,CALD1,and CDK14 were down-regulated in TMK1 cells.Knocking down QKI inhibited the proliferation,invasion and migration ability of TMK1 cells.Conclusion QKI exerts regu-latory control over the transcription of six EMT-related genes,resulting in the formation of circRNAs,thereby promoting the pathogenesis and progression of GC.QKI is highly expressed in TMK1 cells,and knock-down of QKI can inhibit the proliferation,invasion and migration ability of TMK1 cells.
7.Acupuncture for in vitro fertilization-embryo transfer: an overview of systematic reviews.
Xiang-Yu HU ; Wen-Cui XIU ; Lan-Jun SHI ; Rui-Min JIAO ; Zi-Yu TIAN ; Xiao-Yi HU ; Tian-Yu MING ; Wei-Juan GANG ; Xiang-Hong JING
Chinese Acupuncture & Moxibustion 2023;43(11):1315-1323
OBJECTIVES:
To evaluate the report quality, methodological quality and evidence quality of the systematic reviews and meta-analyses (SRs/MAs) of acupuncture for in vitro fertilization-embryo transfer (IVF-ET).
METHODS:
The SRs/MAs of acupuncture for IVF-ET were searched electronically from databases of CNKI, Wanfang, VIP, SinoMed, PubMed, Embase, Cochrane Library, from inception of each database to September 27th, 2022. Two reviewers independently screened the literature and extracted the data. Using PRISMA statement, the AMSTAR 2 scale and the GRADE system, the report quality, methodological quality and evidence quality of the included SRs/MAs were assessed.
RESULTS:
A total of 28 SRs/MAs were included, with PRISMA scores ranging from 8.5 points to 27 points. The problems of report quality focused on protocol and registration, retrieval, risk of bias in studies, additional analysis, limitations and funding. The methodological quality of included studies was generally low, reflecting on items 2, 3, 7, 10, 12 and 16. A total of 85 outcome indexes were included in the GRADE system for evidence grade evaluation. Most of the evidences were low or very low in quality. The reasons for the downgrade were related to study limitations, inconsistency, imprecision and publication bias.
CONCLUSIONS
Acupuncture therapy improves the outcomes of IVF-ET, but the methodological quality and evidence quality of related SRs/MAs are low. It is recommended to conduct more high-quality studies in the future to provide more reliable evidences.
Acupuncture Therapy/methods*
;
Databases, Factual
;
Embryo Transfer
;
Fertilization in Vitro
;
Publication Bias
;
Systematic Reviews as Topic
8.Approach to Assess Adequacy of Acupuncture in Randomized Controlled Trials: A Systematic Review.
Lan-Jun SHI ; Zi-Yu TIAN ; Xiao-Yi HU ; Wen-Cui XIU ; Rui-Min JIAO ; Xiang-Yu HU ; Nicola ROBINSON ; Wei-Juan GANG ; Xiang-Hong JING
Chinese journal of integrative medicine 2023;29(8):730-737
OBJECTIVE:
To summarize and identify the available instruments/methods assessing the adequacy of acupuncture in randomized controlled trials (RCTs) for proposing a new improved instrument.
METHODS:
A systematic literature search was carried out in 7 electronic databases from inception until 21st November 2022. Any study evaluating the adequacy or quality of acupuncture, specifying specific acupuncture treatment-related factors as criteria of subgroup analysis, or developing an instrument/tool to assess the adequacy or quality of acupuncture in an RCT was included. Basic information, characteristics and contents of acupuncture adequacy assessment were presented as frequencies and percentages.
RESULTS:
Forty studies were included in this systematic review. Thirty-five studies (87.50%) were systematic reviews, none of which used formal methods to develop the assessment instruments/methods of acupuncture adequacy; of 5 methodological studies, only 1 study used a relatively formal method. Thirty-two studies (82.05%) assessed the components of acupuncture, while 7 (17.95%) assessed the overall quality of acupuncture. An independent assessment instrument/method was used to assess acupuncture adequacy in 29 studies (74.35%), whereas as one part of a methodological quality assessment scale in 10 (25.65%). Only 9 (23.00%) studies used the assessment results for subgroup analysis, sensitivity analysis or the criteria for inclusion in the meta-analysis.
CONCLUSION
Assessment contents for adequacy or quality of acupuncture in RCTs hadn't still reached consensus and no widely used assessment tools appeared. The methodology of available assessment instruments/scales is far from formal and rigorous. A new instrument/tool assessing adequacy of acupuncture should be developed using a formal method.
Acupuncture Therapy/methods*
;
Randomized Controlled Trials as Topic
9. Effect of estradiol regulating sortilin-related receptor A expression on hippocampal spine density and synaptic protein expression via estrogen receptor of mouse
Yi-Zhou ZHANG ; Sha LI ; Shi-Xiong MI ; Hong-Chun ZUO ; Hui-Xian CUI ; Yi-Zhou ZHANG ; Sha LI ; Shi-Xiong MI ; Hong-Chun ZUO ; Hui-Xian CUI ; Yi-Zhou ZHANG ; Sha LI ; Shi-Xiong MI ; Hui-Xian CUI ; Qian-Qian ZHANG ; Han-Lin LI ; Zi-Han LEI ; Dong-Ze ZHANG
Acta Anatomica Sinica 2023;54(3):261-268
Objective To study the effect and mechanism of estradiol (E
10.LncRNA DRAIC regulates the proliferation, apoptosis, migration and invasion of lung adenocarcinoma cells by targeting let-7i-5p.
Bao Lin LIU ; Yi Shuang CUI ; Ya Ping TIAN ; Ying Ze ZHU ; Zi Qian HONG ; Xue Mei ZHANG ; Guo Gui SUN
Chinese Journal of Oncology 2023;45(6):471-481
Objective: To investigate the effects of lncRNA DRAIC on proliferation, apoptosis, migration and invasion of lung adenocarcinoma cells and its mechanism. Methods: Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expression of DRAIC in lung cancer tissues and corresponding adjacent normal tissues of 40 patients with lung adenocarcinoma who underwent surgery in Tangshan People's Hospital from 2019 to 2020. Lung adenocarcinoma cells A549 and H1299 were cultured in vitro and divided into si-NC group, si-DRAIC group, miR-NC group, let-7i-5p mimics group, si-DRAIC+ inhibitor-NC group, and si-DRAIC+ let-7i-5p inhibitor group. CCK-8 method and clone formation experiment were used to detect cell proliferation. Flow cytometry was used to detect cell apoptosis. Transwell array was used to detect the cell migration and invasion. Western blot was used to detect the protein expressions of Caspase-3, Caspase-9, Bcl-2 and Bax. The double luciferase reporter gene experiment was used to verify the regulatory relationship between DRAIC and let-7i-5p. Independent sample t test was used for comparison between two groups, one-way ANOVA was used for comparison between multiple groups, and Pearson correlation analysis was used for correlation analysis. Results: Compared with adjacent tissues, the expression level of DRAIC in lung adenocarcinoma tissues increased (P<0.05), but the expression level of let-7i-5p decreased (P<0.05). The expression levels of DRAIC and let-7i-5p in lung adenocarcinoma tissues were negatively correlated (r=-0.737, P<0.05). The absorbance value of A549 and H1299 cells in the si-DRAIC group at 48, 72 and 96 hours were lower than those in the si-NC group (P<0.05), the number of clones formed [(91.00±6.08 vs. 136.67±6.51); (50.67±1.53 vs. 76.67±4.51)], the number of migration [(606.67±31.34 vs. 960.00±33.06); (483.33±45.96 vs. 741.67±29.67)], the number of invasion [(185.00±8.19 vs. 447.33±22.05); (365.00±33.87 vs. 688.00±32.97)] were lower than those in the si-NC group (P<0.05). However, the apoptosis rates of cells [(13.43±2.79)% vs. (4.53±0.42)%; (23.77±1.04)% vs. (6.60±1.42)%] were higher than those in the si-NC group (P<0.05). The protein expressions of Caspase-3, Caspase-9 and Bax in si-DRAIC group were higher than those in si-NC group, and the protein expression of Bcl-2 was lower than that in si-NC group (P<0.05). DRAIC is located in the cytoplasm. DRAIC targeted and negatively regulated the expression of let-7i-5p. The absorbance values of A549 and H1299 cells in the let-7i-5p mimics group at 48, 72 and 96 hours were lower than those in the miR-NC group (P<0.05), the number of clones formed [(131.33±14.47 vs. 171.33±6.11); (59.33±4.93 vs. 80.33±7.09)], the number of migration [(137.67±3.06 vs. 579.33±82.03); (425.00±11.14 vs. 669.33±21.13)], the number of invasion [(54.00±4.36 vs. 112.67±11.59); (80.00±4.58 vs. 333.33±16.80)] were lower than those in the miR-NC group (P<0.05). However, the apoptosis rates of cells [(14.57±1.10)% vs. (6.97±1.11)%; (23.97±0.42)% vs. (7.07±1.21)%] were higher than those in the miR-NC group (P<0.05). The protein expressions of Caspase-3, Caspase-9 and Bax in let-7i-5p mimics group were higher than those in miR-NC group, and the protein expression of Bcl-2 was lower than that in miR-NC group (P<0.05). The absorbance values of A549 and H1299 cells in the si-DRAIC+ let-7i-5p inhibitor group at 48, 72 and 96 hours were higher than those in the si-DRAIC+ inhibitor-NC group (P<0.05), the number of clones formed [(82.00±5.29 vs. 59.00±5.57); (77.67±4.93 vs. 41.33±7.57)], the number of migration [(774.33±35.81 vs. 455.67±19.04); (569.67±18.72 vs. 433.67±16.77)], the number of invasion [(670.33±17.21 vs. 451.00±17.52); (263.67±3.06 vs. 182.33±11.93)] were higher than those in the si-DRAIC+ inhibitor-NC group (P<0.05). However, the apoptosis rates of cells [(7.73±0.45)% vs. (19.13±1.50)%; (8.00±0.53)% vs. (28.40±0.53)%] were lower than those in the si-NC group (P<0.05). The protein expressions of Caspase-3, Caspase-9 and Bax in si-DRAIC+ let-7i-5p inhibitor group were higher than those in si-DRAIC+ inhibitor-NC group, and the protein expression of Bcl-2 was lower than that in si-DRAIC+ inhibitor-NC group (P<0.05). Conclusion: DRAIC is highly expressed in lung adenocarcinoma, and DRAIC promotes the proliferation, migration and invasion of lung adenocarcinoma cells and inhibits apoptosis by targeting let-7i-5p.
Humans
;
Adenocarcinoma/genetics*
;
Apoptosis/genetics*
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/metabolism*
;
Caspase 9/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Lung/metabolism*
;
MicroRNAs/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Long Noncoding/genetics*

Result Analysis
Print
Save
E-mail