1.The Critical Roles of GABAergic Interneurons in The Pathological Progression of Alzheimer’s Disease
Ke-Han CHEN ; Zheng-Jiang YANG ; Zi-Xin GAO ; Yuan YAO ; De-Zhong YAO ; Yin YANG ; Ke CHEN
Progress in Biochemistry and Biophysics 2025;52(9):2233-2240
Alzheimer’s disease (AD), a progressive neurodegenerative disorder and the leading cause of dementia in the elderly, is characterized by severe cognitive decline, loss of daily living abilities, and neuropsychiatric symptoms. This condition imposes a substantial burden on patients, families, and society. Despite extensive research efforts, the complex pathogenesis of AD, particularly the early mechanisms underlying cognitive dysfunction, remains incompletely understood, posing significant challenges for timely diagnosis and effective therapeutic intervention. Among the various cellular components implicated in AD, GABAergic interneurons have emerged as critical players in the pathological cascade, playing a pivotal role in maintaining neural network integrity and function in key brain regions affected by the disease. GABAergic interneurons represent a heterogeneous population of inhibitory neurons essential for sustaining neural network homeostasis. They achieve this by precisely modulating rhythmic oscillatory activity (e.g., theta and gamma oscillations), which are crucial for cognitive processes such as learning and memory. These interneurons synthesize and release the inhibitory neurotransmitter GABA, exerting potent control over excitatory pyramidal neurons through intricate local circuits. Their primary mechanism involves synaptic inhibition, thereby modulating the excitability and synchrony of neural populations. Emerging evidence highlights the significant involvement of GABAergic interneuron dysfunction in AD pathogenesis. Contrary to earlier assumptions of their resistance to the disease, specific subtypes exhibit vulnerability or altered function early in the disease process. Critically, this impairment is not merely a consequence but appears to be a key driver of network hyperexcitability, a hallmark feature of AD models and potentially a core mechanism underlying cognitive deficits. For instance, parvalbumin-positive (PV+) interneurons display biphasic alterations in activity. Both suppressing early hyperactivity or enhancing late activity can rescue cognitive deficits, underscoring their causal role. Somatostatin-positive (SST+) neurons are highly sensitive to amyloid β-protein (Aβ) dysfunction. Their functional impairment drives AD progression via a dual pathway: compensatory hyperexcitability promotes Aβ generation, while released SST-14 forms toxic oligomers with Aβ, collectively accelerating neuronal loss and amyloid deposition, forming a vicious cycle. Vasoactive intestinal peptide-positive (VIP+) neurons, although potentially spared in number early in the disease, exhibit altered firing properties (e.g., broader spikes, lower frequency), contributing to network dysfunction (e.g., in CA1). Furthermore, VIP release induced by 40 Hz sensory stimulation (GENUS) enhances glymphatic clearance of Aβ, demonstrating a direct link between VIP neuron function and modulation of amyloid pathology. Given their central role in network stability and their demonstrable dysfunction in AD, GABAergic interneurons represent promising therapeutic targets. Current research primarily explores three approaches: increasing interneuron numbers (e.g., improving cortical PV+ interneuron counts and behavior in APP/PS1 mice with the antidepressant citalopram; transplanting stem cells differentiated into functional GABAergic neurons to enhance cognition), enhancing neuronal activity (e.g., using low-dose levetiracetam or targeted activation of specific molecules to boost PV+ interneuron excitability, restoring neural network γ‑oscillations and memory; non-invasive neuromodulation techniques like 40 Hz repetitive transcranial magnetic stimulation (rTMS), GENUS, and minimally invasive electroacupuncture to improve inhibitory regulation, promote memory, and reduce Aβ), and direct GABA system intervention (clinical and animal studies reveal reduced GABA levels in AD-affected brain regions; early GABA supplementation improves cognition in APP/PS1 mice, suggesting a therapeutic time window). Collectively, these findings establish GABAergic interneuron intervention as a foundational rationale and distinct pathway for AD therapy. In conclusion, GABAergic interneurons, particularly the PV+, SST+, and VIP+ subtypes, play critical and subtype-specific roles in the initiation and progression of AD pathology. Their dysfunction significantly contributes to network hyperexcitability, oscillatory deficits, and cognitive decline. Understanding the heterogeneity in their vulnerability and response mechanisms provides crucial insights into AD pathogenesis. Targeting these interneurons through pharmacological, neuromodulatory, or cellular approaches offers promising avenues for developing novel, potentially disease-modifying therapies.
2. Establishment and biological characterization of drug-resistant cells and identification of multidrug resistance in small-cell lung cancer
Yong-Qing HAN ; Zheng-Yuan WANG ; Xiu-Fen DAI ; Zi-Ran WANG ; Jing LI ; Xin QI ; Jing LI
Chinese Pharmacological Bulletin 2024;40(2):279-284
Aim To establish NCI-H446/EP for small cell lung cancer resistant cells resistant to cisplatin and etoposide, and to evaluate their biological characteristics and multidrug resistance. Methods Nude mice were subcutaneously inoculated with NCI-H446 cells of SCLC to construct an in vivo model of xenograft tumor, and were given first-line EP regimen treatment for SCLC, inducing drug resistance in vivo, and stripping tumor tissue in vitro culture to obtain drug-resistant cells. The resistance coefficient, cell doubling time, cell cycle distribution, expression of multidrug resistance gene (MDR1), and drug resistance-related protein were detected in vitro, and the drug resistance to cisplatin and etoposide in vivo were verified. Results Mice with NCI-H446 tumors acquired resistance after eight weeks' EP regimen treatment, and the drug-resistant cell line NCI-H446/EP was obtained by isolation and culture in vitro. The resistance factors of this cell line to cisplatin, etoposide, SN38 and doxorubicin were 12.01, 18.36, 65.4 and 10.12, respectively. Compared with parental cells, the proportion of NCIH446/EP cells in Q
3.The Research Status of Novel Coronavirus Antibodies and Small Molecule Inhibitors
Xin WU ; Han-Jie YU ; Xiao-Juan BAO ; Yu-Zi WANG ; Zheng LI
Progress in Biochemistry and Biophysics 2024;51(4):754-771
The World Health Organization has declared that the outbreak of coronavirus disease 2019(COVID-19) is a global pandemic. As mutations occurred in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the global epidemic still needs further concern. Worryingly, the effectiveness and neutralizing activity of existing antibodies and vaccines against SARS-CoV-2 variants is declining. There is an urgent need to find an effective antiviral medication with broad-spectrum inhibitory effects on novel coronavirus mutant strains against the SARS-CoV-2 infection. Neutralizing antibodies play an important role in the prevention and treatment of COVID-19. The interaction of spike-receptor-binding domain (Spike-RBD) of SARS-CoV-2 and human angiotensin-converting enzyme 2 (ACE2) is the first and critical step of SARS-CoV-2 infection. Hence, the SARS-CoV-2 Spike-RBD is a hot target for neutralizing antibodies development. Evusheld, the combination of Tixagevimab and Cilgavimab monoclonal antibodies (mAbs) targeting Spike-RBD exhibits neutralizing activity against BA.2.12.1, BA.4 and BA.5, which could be used as pre-exposure prophylaxis against SARS-CoV-2 infection. The nucleocapsid (N) protein is a conservative and high-abundance structural protein of SARS-CoV-2. The nCoV396 monoclonal antibody, isolated from the blood of convalescent COVID-19 patients against the N protein of SARS-CoV-2. This mAb not only showed neutralizing activity but also inhibits hyperactivation of complement and lung injury induced by N protein. The mAb 3E8 targeting ACE2 showed broadly neutralizing activity against SARS-CoV-2 and D614G, B.1.1.7, B.1.351, B.1.617.1 and P.1 variants in vitro and in vivo, but did not impact the biological activity of ACE2. Compared with neutralizing antibodies, small molecule inhibitors have several advantages, such as broad-spectrum inhibitory effect, low cost, and simple administration methods. Several small-molecule inhibitors disrupt viral binding by targeting the ACE2 and N-terminal domain (NTD) of SARS-CoV-2 spike protein. Known drugs such as chloroquine and hydroxychloroquine could also block the infection of SARS-CoV-2 by interacting with residue Lys353 in the peptidase domain of ACE2. The transmembrane protease serine 2 (TMPRSS2) inhibitors Camostat mesylate and Proxalutamide inhibit infection by blocking TMPRSS2 mediates viral membrane fusion. The main protease inhibitor Paxlovid and RNA-dependent RNA polymerase inhibitor Azvudine have been approved for treatment of COVID-19 patients. This review summarizes the current research status of neutralizing antibodies and small molecule inhibitors and prospects for their application. We expect to provide more valuable information for further studies in this field.
4.A new hexacyclic triterpenoid with 13α ,27-cyclopropane ring from Glechoma longituba
Qian ZHANG ; Mei-long LU ; Tian-zi LIU ; Yue-ting ZHANG ; Ao ZHU ; Li-li DING ; Zhu-zhen HAN ; Li-hua GU ; Zheng-tao WANG
Acta Pharmaceutica Sinica 2024;59(5):1334-1340
In order to study the compounds from
5.Protective Effect of Endogenous ω-3 Polyunsaturated Fatty Acid Against Cisplatin-Induced Myelosuppression
Qi-Hua XU ; Zong-Meng ZHANG ; Chao-Feng XING ; Han-Si CHEN ; Ke-Xin ZHENG ; Yun-Ping MU ; Zi-Jian ZHAO ; Fang-Hong LI
Journal of Experimental Hematology 2024;32(5):1601-1607
Objective:To investigate the protective effect of endogenous ω-3 polyunsaturated fatty acid(PUFA)against cisplatin-induced myelosuppression and the mechanism of reducing apoptosis in bone marrow nucleated cells using mfat-1 transgenic mice.Methods:The experimental animals were divided into 4 groups:wild-type mice normal control group,mfat-1 transgenic mice normal control group,wild-type mice model group and mfat-1 transgenic mice model group.The mice in the model group were injected intraperitoneally with 7.5 mg/kg cisplatin on day 0 and day 7 to construct a myelosuppression model,while the mice in the normal control group were injected intraperitoneally with an equal amount of saline,and their status was observed and their body weight was measured daily.Peripheral blood was taken after 14 day for routine blood analysis,and the content and proportion of PUFA in peripheral blood were detected using gas chromatography.Bone marrow nucleated cells in the femur of mice were counted.The histopathological changes in bone marrow were observed by histopathological staining.The apoptosis of nucleated cells and the expression level changes of apoptosis-related genes in the bone marrow of mice were detected by flow cytometry and fluorescence quantitative PCR.Results:Compared with wild-type mice,mfat-1 transgenic mice showed significantly increased levels of ω-3 PUFA in peripheral blood and greater tolerance to cisplatin.Peripheral blood analysis showed that endogenous ω-3 PUFA promoted the recovery of leukocytes,erythrocytes,platelets and haemoglobin in peripheral blood of myelosuppressed mice.The results of HE staining showed that endogenous ω-3 PUFA significantly improved the structural damage of bone marrow tissue induced by cisplatin.Flow cytometry and PCR showed that,compared with wild-type mice model group,the apoptosis rate of bone marrow nucleated cells in mfat-1 transgenic mice was significantly reduced(P<0.001),and the expression of anti-apoptotic genes Bcl-2 mRNA was significantly increased(P<0.01),while the expressions of pro-apoptotic genes Bax and Bak mRNA were significantly reduced(P<0.001,P<0.05).Conclusion:Endogenous ω-3 PUFA can reduce cisplatin-induced apoptosis in bone marrow nucleated cells,increase the number of peripheral blood cells and exert a protective effect against cisplatin-induced myelosuppression by regulating the expression of apoptosis-related genes.
6.The RNA binding protein QKI can promote gastric cancer by regulating cleavage of EMT-related gene transcripts to form circRNAs
Yi-Shuang CUI ; Xuan ZHENG ; Ya-Nan WU ; Yi-Han YAO ; Jun WANG ; Zi-Qing LIU ; Guo-Gui SUN
Chinese Pharmacological Bulletin 2024;40(8):1462-1473
Aim To study the proliferation,invasion and migration ability of Quaking(QKI)in gastric cancer(GC)via elucidating the molecular mechanisms associated with QKI in the occurrence and development of GC through bioinformatics.Methods Differential expression analysis of QKI was performed across vari-ous human cancer samples by merging data from the TCGA and GTEx databases.The correlation was ana-lyzed between QKI protein expression and tumor muta-tion burden(TMB)score,microsatellite instability(MSI)score,and ESTIMATE score,and the correla-tion was also explored between QKI protein expression and overall survival(OS),disease free survival(DFS),and progression free survival(PFS).EMT related genes that could encode DECircRNAs were ob-tained through bioinformatics analysis to construct a QKI-EMT-circRNAs regulatory network.The differenti-ally expressed circRNAs and EMT related genes in TMK1 cells were verified.The proliferation,invasion and migration ability of the QKI was studied by using the knockdown system.Results QKI was differential-ly expressed in the vast majority of tumors and was closely related to TMB,MSI,and tumor microenviron-ment(TME);QKI emerged as a high-risk factor for predicting OS,DFS,and PFS in individuals with com-mon human cancers.QKI regulated the splicing of 6 EMT related gene transcripts to form eight circRNAs,all of which were significantly associated with the prog-nosis of gastric cancer patients.Cell experiments showed that compared to normal gastric epithelial cells,only hsa_ccirc_0004015,CALD1,and CDK14 were down-regulated in TMK1 cells.Knocking down QKI inhibited the proliferation,invasion and migration ability of TMK1 cells.Conclusion QKI exerts regu-latory control over the transcription of six EMT-related genes,resulting in the formation of circRNAs,thereby promoting the pathogenesis and progression of GC.QKI is highly expressed in TMK1 cells,and knock-down of QKI can inhibit the proliferation,invasion and migration ability of TMK1 cells.
7.Effect of NR2A specific antagonist NVP-AAM077 on spatial learning and memory in rats
Feng ZHENG ; Zi-Han ZHANG ; Jian-Zhou CHEN ; Qing-Hua JIN ; Bin XIAO
Chinese Pharmacological Bulletin 2024;40(8):1517-1522
Aim To observe the changes in hippocam-pal 2A subunit of N-methyl-D-aspartate receptor(NR2A)before and after the learning and memory training,and then investigate the neuropharmacological effects of NR2A by microinjection of NVP-AAM077(NR2A specific antagonist)into the hippocampal den-teta gyrus,based on the spatial learning and memory behavior paradigm induced by Mirror water maze train-ing.Methods Three-month old SD rats were random-ly divided into the training and non-training group,and the rats in the two groups were randomly divided into control group and NVP-AAM077 group(NVP).The expressions of NR2A,brain-derived neurotrophic factor(BDNF),transcriptional activator 4(ATF4)and eu-karyotic transcription initiation factor 2 α(eIF2α)phosphorylation levels in denteta gyrus were detected by Western blot.Then,integrated stress response in-hibitor ISRIB was microinjected into the dentate gyrus after the NVP,the expression of ATF4 and p-eIF2αlevels,and the spatial memory abilities were detected.Results Compared with non-training,behavioral training promoted the expression of NR2A and BDNF of rats in denteta gyrus,and this effect could be inhibi-ted by NVP,which significantly increased the expres-sion of p-eIF2α and ATF4.Injection of ISRIB into denteta gyrus significantly inhibited the expression of ATF4,and reversed the spatial memory impairment caused by NVP.Conclusion NVP-induced hipp-ocampal dentate gyrus NR2A-mediated spatial learning and memory impairment in rats may be related to hipp-ocampal integrated stress response.
8.Investigation of ABO and RhD blood groups in childbearing age people in rural areas of Yunnan Province.
Zheng Yuan XIE ; Guang CAO ; Tao WANG ; Cai KONG ; Yi Xiao LI ; Wei Lei ZU ; Zi Gao ZHAO ; Han Feng YE
Chinese Journal of Preventive Medicine 2023;57(1):52-57
The participants in this study were 20-49 years old rural childbearing age people who received the National Free Preconception Health Examination Project (NFPHEP) in Yunnan Province during 2013 to 2019. The proportion of ABO and RhD blood groups among different ethnic groups and different areas were calculated. The proportion of 2 748 131 participants with blood group A phenotype was highest (32.60%), followed by O (30.60%), B (27.33%) and AB (9.47%). In the RhD blood system, the proportion of the RhD positivity (RhD+) and RhD negativity (RhD-) group were 99.29% and 0.71% respectively. The proportions blood groups were significantly different among ethnic groups and areas (all P<0.001). Among 18 ethnic groups with more than 3 000 participants, Yao (42.75%), Bouyei (40.58%) and Dai (40.37%) ethnic groups had higher proportion of blood group O phenotype than other ethnic groups. Wa ethnic groups had highest proportion of the A (40.15%) and AB phenotypes (11.23%). Miao ethnic group (34.70%) and Lahu ethnic group (34.42%) had higher proportion of blood group B phenotype than other ethnic groups. Wa ethnic group had the highest proportion of RhD-group (1.88%). In all 16 prefectures of Yunnan, the proportion of blood group O phenotype was highest in Xishuangbanna Dai Autonomous Prefecture (40.27%). Baoshan city (36.39%), Lincang city (36.22%) and Dali Bai autonomous prefecture (36.06%) had higher proportion of blood group A phenotype than other regions. Diqing Tibetan Autonomous Prefecture (30.83%) and Qujing city (30.48%) had higher proportion of blood group B phenotype than other areas, while Zhaotong city had a highest proportion of blood group AB phenotype (11.19%). The proportion of RhD-group was highest in Honghe hani and Yi nationality autonomous prefecture(1.37%). The A RhD+(39.36%), A RhD-(0.78%), AB RhD+(11.03%), AB RhD-(0.20%) and O RhD-(0.48%) blood groups were higher proportion in Wa ethnic group than in other ethnic groups (P<0.001).
Adult
;
Humans
;
Middle Aged
;
Young Adult
;
Blood Group Antigens
;
China
;
Ethnicity
;
Rural Population
9.Efficacy and safety of acupuncture for polycystic ovary syndrome: An overview of systematic reviews.
Han YANG ; Zhi-Yong XIAO ; Zi-Han YIN ; Zheng YU ; Jia-Jia LIU ; Yan-Qun XIAO ; Yao ZHOU ; Juan LI ; Jie YANG ; Fan-Rong LIANG
Journal of Integrative Medicine 2023;21(2):136-148
BACKGROUND:
Polycystic ovary syndrome (PCOS) is the primary cause of anovulatory infertility, bringing serious harm to women's physical and mental health. Acupuncture may be an effective treatment for PCOS. However, systematic reviews (SRs) on the efficacy and safety of acupuncture for PCOS have reported inconsistent results, and the quality of these studies has not been adequately assessed.
OBJECTIVE:
To summarize and evaluate the current evidence on the efficacy and safety of acupuncture for PCOS, as well as to assess the quality and risks of bias of the available SRs.
SEARCH STRATEGY:
Nine electronic databases (Cochrane Library, MEDLINE, Embase, PsycINFO, CINAHL, Chinese National Knowledge Infrastructure, Wanfang Data, Chongqing VIP Chinese Science and Technology Periodical Database, and China Biology Medicine disc) were searched from their establishment to July 27, 2022. Based on the principle of combining subject words with text words, the search strategy was constructed around search terms for "acupuncture," "polycystic ovary syndrome," and "systematic review."
INCLUSION CRITERIA:
SRs of randomized controlled trials that explored the efficacy and (or) safety of acupuncture for treating patients with PCOS were included.
DATA EXTRACTION AND ANALYSIS:
Two authors independently extracted study data according to a predesigned form. Tools for evaluating the methodological quality, risk of bias, reporting quality, and confidence in study outcomes, including A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR 2), Risk of Bias in Systematic Reviews (ROBIS), Preferred Reporting Items for Systematic Reviews and Meta-analyses for Acupuncture (PRISMA-A), and the Grading of Recommendations Assessment, Development and Evaluation (GRADE), were used to score the included SRs.
RESULTS:
A total of 885 studies were retrieved, and 11 eligible SRs were finally included in this review. The methodological quality of 2 SRs (18.18%) was low, while the other 9 SRs (81.82%) were scored as extremely low. Four SRs (36.36%) were considered to be of low risk of bias. As for reporting quality, the reporting completeness of 9 SRs (81.82%) was more than 70%. Concerning the confidence in study results, 2 study results were considered to have a high quality of evidence (3.13%), 14 (21.88%) a "moderate" quality, 28 (43.75%) a "low" quality, and 20 (31.24%) considered a "very low" quality. Descriptive analyses suggested that combining acupuncture with other medicines can effectively improve the clinical pregnancy rate (CPR) and ovulation rate, and reduce luteinizing hormone/follicle-stimulating hormone ratio, homeostasis model assessment of insulin resistance, and body mass index (BMI). When compared with medicine alone, acupuncture alone also can improve CPR. Further, when compared with no intervention, acupuncture had a better effect in promoting the recovery of menstrual cycle and reducing BMI. Acupuncture was reported to cause no adverse events or some adverse events without serious harm.
CONCLUSION
The efficacy and safety of acupuncture for PCOS remains uncertain due to the limitations and inconsistencies of current evidence. More high-quality studies are needed to support the use of acupuncture in PCOS.
Pregnancy
;
Humans
;
Female
;
Polycystic Ovary Syndrome/etiology*
;
Acupuncture Therapy/adverse effects*
;
Infertility, Female/etiology*
;
China
10. Effects of methionine restriction on oral cancer cell proliferation, migration and invasion
Yue-Rong PENG ; Ke-Xin ZHENG ; Han-Si CHEN ; Xue-Peng WANG ; Yun-Hao LAI ; Su-Jin ZHOU ; Zi-Jian ZHAO ; Zheng-Gang ZHAO ; Fang-Hong LI
Chinese Pharmacological Bulletin 2023;39(8):1444-1450
Aim To investigate the effect of methionine restriction on the proliferation, migration and invasion of human oral squamous carcinoma CAL-27 cells. Methods Cell proliferation and colony formation ability were detected by cell counting and colony forming assay. The changes in cell cycle and apoptosis were detected by propidium iodide (PI) staining flow cytometry and Annexin V/7-amino-actinomycin staining flow cytometry. The migration and invasion ability of CAL-27 was detected by scratch and Transwell assay. The expression levels of apoptosis proteins Bax and Bcl-2, cyclins CDK2 and CDK4 and migration and invasion proteins N-cadherin and E-cadherin were examined by Western blot. Results Methionine restriction significantly inhibited the proliferation and clone formation of oral squamous cancer cell CAL-27 (P < 0. 01), induced cell cycle arrest at G

Result Analysis
Print
Save
E-mail