1.Effects of electroacupuncture on the expression of metabolic enzymes and autophagy genes in gastrocnemius muscle tissues of exercising rats
Rongfa ZHENG ; Weibin MO ; Peng HUANG ; Junji CHEN ; Ting LIANG ; Fangyu ZI ; Guofeng LI
Chinese Journal of Tissue Engineering Research 2025;29(6):1127-1136
BACKGROUND:Acute exercise tends to cause skeletal muscle tissue damage and lipid metabolism disorders in vivo,but the mechanism by which acute exercise combined with electroacupuncture modulates metabolic and autophagic pathways in vivo is unclear. OBJECTIVE:To observe the changes in metabolic enzymes and autophagy levels in skeletal muscle of rats subjected to acute exercise by electroacupuncture at the acupoints of"Zusanli"and"Huantiao." METHODS:Fifty male Sprague-Dawley rats were randomly divided into three groups:quiet control group(n=10),model group(n=20),and reverse electroacupuncture group(n=20).The latter two groups were set up with two time points,i.e.immediate and 3 hours after exercise groups(n=10 per time point).The model group and the reverse electroacupuncture group underwent acute exercise training after adaptive treadmill training.The rats in the reverse electroacupuncture group underwent electroacupuncture treatment(parameters:electroacupuncture on both sides of the rats at the acupoints of"Zusanli"and"Huantiao,"continuous wave,frequency of 2 Hz,intensity of 2 mA,leaving the needle in the body for 30 minutes,once a day for 7 consecutive days)before treadmill training.Bilateral gastrocnemius muscle tissues were taken under anesthesia immediately after exercise and 3 hours after exercise,and hematoxylin-eosin staining was used to observe the histopathological changes of rat skeletal muscle.ELISA kit was used to detect the activities of hepatic lipase,fatty acid synthase,hormone-sensitive lipase,and carnitine palmitoyltransferase 1 in rat skeletal muscle tissues.Immunohistochemistry and western blot were used to detect the changes in the expression of autophagy genes. RESULTS AND CONCLUSION:After hematoxylin-eosin staining,the arrangement of gastrocnemius muscle fibers in the model group was disturbed,swollen and ruptured immediately after exercise and 3 hours after exercise.In the reverse electroacupuncture group,gastrocnemius muscle fibers were tightly arranged and the number of swollen and ruptured cells was greatly reduced immediately after exercise and 3 hours after exercise,and there was no significant difference when compared with the quiet control group.Compared with the quiet control group,the activities of hepatic lipase and fatty acid synthase were lower while the activities of lipoprotein lipase,hormone-sensitive lipase,and carnitine palmitoyltransferase 1 were higher in the model group and the reverse electroacupuncture group 3 hours after exercise(P<0.05 or P<0.01).Compared with the model group,the activities of lipoprotein lipase and carnitine palmitoyltransferase 1 were higher in the reverse electroacupuncture group immediately after exercise(P<0.05),while the activity of lipoprotein lipase was higher and the activity of hormone-sensitive lipase was lower in the reverse electroacupuncture group 3 hours after exercise(P<0.01).Immunohistochemical results showed that compared with the quiet control group,the expression of P62,autophagy-related gene 5 and autophagy-related gene 7 was higher in the model group immediately and 3 hours after exercise,as well as in the reverse electroacupuncture group immediately after exercise(P<0.05 or P<0.01);compared with the model group,the expression of P62 and autophagy-related gene 7 was lower in the reverse electroacupuncture group immediately and 3 hours after exercise(P<0.05).Western blot results showed that the protein expression of P62 and autophagy-related gene 7 in the reverse electroacupuncture group was lower than that in the model group immediately after exercise(P<0.05);the protein expression of Parkin in the model group was higher than that in the quiet control group immediately and 3 hours after exercise(P<0.05);and the protein expression of Parkin in the reverse electroacupuncture group was lower than that in the model group immediately and 3 hours after exercise(P<0.05).To conclude,acute exercise induces disorders,swelling and rupture of gastrocnemius muscle fibers in rats and electroacupuncture on both sides of the acupoints of"Zusanli"and"Huantiao"can improve the level of lipid metabolism and regulate autophagy cells in rat skeletal muscle,preventing the disorders of lipid metabolism and damage of gastrocnemius muscle tissues caused by acute exercise.The mechanism may be closely related to the regulation of autophagy-related factor P62,autophagy-related gene 5,autophagy-related gene 7,and Parkin protein expression to promote the occurrence of autophagy or regulate the autophagy pathway in rat skeletal muscle cells.
2.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection.
3.The Critical Roles of GABAergic Interneurons in The Pathological Progression of Alzheimer’s Disease
Ke-Han CHEN ; Zheng-Jiang YANG ; Zi-Xin GAO ; Yuan YAO ; De-Zhong YAO ; Yin YANG ; Ke CHEN
Progress in Biochemistry and Biophysics 2025;52(9):2233-2240
Alzheimer’s disease (AD), a progressive neurodegenerative disorder and the leading cause of dementia in the elderly, is characterized by severe cognitive decline, loss of daily living abilities, and neuropsychiatric symptoms. This condition imposes a substantial burden on patients, families, and society. Despite extensive research efforts, the complex pathogenesis of AD, particularly the early mechanisms underlying cognitive dysfunction, remains incompletely understood, posing significant challenges for timely diagnosis and effective therapeutic intervention. Among the various cellular components implicated in AD, GABAergic interneurons have emerged as critical players in the pathological cascade, playing a pivotal role in maintaining neural network integrity and function in key brain regions affected by the disease. GABAergic interneurons represent a heterogeneous population of inhibitory neurons essential for sustaining neural network homeostasis. They achieve this by precisely modulating rhythmic oscillatory activity (e.g., theta and gamma oscillations), which are crucial for cognitive processes such as learning and memory. These interneurons synthesize and release the inhibitory neurotransmitter GABA, exerting potent control over excitatory pyramidal neurons through intricate local circuits. Their primary mechanism involves synaptic inhibition, thereby modulating the excitability and synchrony of neural populations. Emerging evidence highlights the significant involvement of GABAergic interneuron dysfunction in AD pathogenesis. Contrary to earlier assumptions of their resistance to the disease, specific subtypes exhibit vulnerability or altered function early in the disease process. Critically, this impairment is not merely a consequence but appears to be a key driver of network hyperexcitability, a hallmark feature of AD models and potentially a core mechanism underlying cognitive deficits. For instance, parvalbumin-positive (PV+) interneurons display biphasic alterations in activity. Both suppressing early hyperactivity or enhancing late activity can rescue cognitive deficits, underscoring their causal role. Somatostatin-positive (SST+) neurons are highly sensitive to amyloid β-protein (Aβ) dysfunction. Their functional impairment drives AD progression via a dual pathway: compensatory hyperexcitability promotes Aβ generation, while released SST-14 forms toxic oligomers with Aβ, collectively accelerating neuronal loss and amyloid deposition, forming a vicious cycle. Vasoactive intestinal peptide-positive (VIP+) neurons, although potentially spared in number early in the disease, exhibit altered firing properties (e.g., broader spikes, lower frequency), contributing to network dysfunction (e.g., in CA1). Furthermore, VIP release induced by 40 Hz sensory stimulation (GENUS) enhances glymphatic clearance of Aβ, demonstrating a direct link between VIP neuron function and modulation of amyloid pathology. Given their central role in network stability and their demonstrable dysfunction in AD, GABAergic interneurons represent promising therapeutic targets. Current research primarily explores three approaches: increasing interneuron numbers (e.g., improving cortical PV+ interneuron counts and behavior in APP/PS1 mice with the antidepressant citalopram; transplanting stem cells differentiated into functional GABAergic neurons to enhance cognition), enhancing neuronal activity (e.g., using low-dose levetiracetam or targeted activation of specific molecules to boost PV+ interneuron excitability, restoring neural network γ‑oscillations and memory; non-invasive neuromodulation techniques like 40 Hz repetitive transcranial magnetic stimulation (rTMS), GENUS, and minimally invasive electroacupuncture to improve inhibitory regulation, promote memory, and reduce Aβ), and direct GABA system intervention (clinical and animal studies reveal reduced GABA levels in AD-affected brain regions; early GABA supplementation improves cognition in APP/PS1 mice, suggesting a therapeutic time window). Collectively, these findings establish GABAergic interneuron intervention as a foundational rationale and distinct pathway for AD therapy. In conclusion, GABAergic interneurons, particularly the PV+, SST+, and VIP+ subtypes, play critical and subtype-specific roles in the initiation and progression of AD pathology. Their dysfunction significantly contributes to network hyperexcitability, oscillatory deficits, and cognitive decline. Understanding the heterogeneity in their vulnerability and response mechanisms provides crucial insights into AD pathogenesis. Targeting these interneurons through pharmacological, neuromodulatory, or cellular approaches offers promising avenues for developing novel, potentially disease-modifying therapies.
4.Specific DNA barcodes screening, germplasm resource identification, and genetic diversity analysis of Platycodon grandiflorum
Xin WANG ; Yue SHI ; Jin-hui MAN ; Yu-ying HUANG ; Xiao-qin ZHANG ; Ke-lu AN ; Gao-jie HE ; Zi-qi LIU ; Fan-yuan GUAN ; Yu-yan ZHENG ; Xiao-hui WANG ; Sheng-li WEI
Acta Pharmaceutica Sinica 2024;59(1):243-252
Platycodonis Radix is the dry root of
5. Establishment and biological characterization of drug-resistant cells and identification of multidrug resistance in small-cell lung cancer
Yong-Qing HAN ; Zheng-Yuan WANG ; Xiu-Fen DAI ; Zi-Ran WANG ; Jing LI ; Xin QI ; Jing LI
Chinese Pharmacological Bulletin 2024;40(2):279-284
Aim To establish NCI-H446/EP for small cell lung cancer resistant cells resistant to cisplatin and etoposide, and to evaluate their biological characteristics and multidrug resistance. Methods Nude mice were subcutaneously inoculated with NCI-H446 cells of SCLC to construct an in vivo model of xenograft tumor, and were given first-line EP regimen treatment for SCLC, inducing drug resistance in vivo, and stripping tumor tissue in vitro culture to obtain drug-resistant cells. The resistance coefficient, cell doubling time, cell cycle distribution, expression of multidrug resistance gene (MDR1), and drug resistance-related protein were detected in vitro, and the drug resistance to cisplatin and etoposide in vivo were verified. Results Mice with NCI-H446 tumors acquired resistance after eight weeks' EP regimen treatment, and the drug-resistant cell line NCI-H446/EP was obtained by isolation and culture in vitro. The resistance factors of this cell line to cisplatin, etoposide, SN38 and doxorubicin were 12.01, 18.36, 65.4 and 10.12, respectively. Compared with parental cells, the proportion of NCIH446/EP cells in Q
6.Effect of type of carrier material on the in vitro properties of solid dispersions of progesterone
Jing-nan QUAN ; Yi CHENG ; Jing-yu ZHOU ; Meng LI ; Zeng-ming WANG ; Nan LIU ; Zi-ming ZHAO ; Hui ZHANG ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2024;59(3):735-742
This study investigated the effect of different carrier materials on the
7.GUAN Guo-Hua's Experience in Differentiating and Treating Central Serous Chorioretinopathy in Lingnan Area
Ying-Zi LUO ; Xiang-Yue ZHENG ; Xiao-Yi YU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):759-763
This article summarized Professor GUAN Guo-Hua's clinical experience in treating central serous chorioretinopathy(CSC)in Lingnan area.Based on the theory of"macula due to the spleen dysfunction",and by taking the geographical and climatic characteristics of Lingnan area as well as the body constitutional features of Lingnan residents into account,Professor GUAN Guo-Hua proposed that spleen deficiency leading to damp encumbrance was the fundamental pathogenesis of CSC in Lingnan area,and liver and kidney were gradually affected in the middle and late stages of CSC,which finally resulted into blood stasis and water retention.For the treatment of initial attack of CSC,the focus was on treating the spleen,and Erchen Decoction was adopted as the basic prescription for modified application to strengthen the spleen and drain dampness;for the treatment of CSC in the middle and late stages,the emphasis was on simultaneous treatment of the liver,spleen and kidney as well as blood and water,and Zhujing Pills and Wuling Powder were adopted as the basic prescriptions for nourishing the liver and kidney and for strengthening the spleen,activating blood and promoting urination.The treatment of the spleen is advocated throughout the whole treatment process,and the medication of drugs should be modified based on syndrome differentiation and according to the specific conditions,thus to achieve significant results.
8.Prognostic risk score model and bioinformatics analysis of antioxidant-associated lncRNAs in gastric cancer
Xiao-Xin ZHANG ; Zi-Peng XU ; Yan-Sheng LU ; Jie CHENG ; Zheng-Hai ZHU
Chinese Journal of Current Advances in General Surgery 2024;27(2):122-128
Objective:To investigate the value of antioxidant-associated long non-coding RNAs(lncRNAs)risk score model in prognosis and the association with immune microenvironment of the gastric cancer patients.Methods:Gastric cancer transcriptome data and clinical information were downloaded from TCGA database.Antioxidant-associated lncRNAs were obtained by co-ex-pression analysis of lncRNAs and antioxidant genes.Risk score was constructed using univariate cox regression analysis and lasso regression analysis.Log-Rank test was used to compare the survival differences between two groups.Receiver operating characteristic curve(ROC)was used to assess the specificity and sensitivity of the prognostic risk score model.Nomogram was constructed com-bining risk score and clinical parameters.Immune cell infiltration was assessed by TIMER 2.0.Im-munotherapy sensitivity of each sample was analyzed at TIDE website.Results:A risk score in-cluding 12 IncRNAs was constructed by univariate cox regression analysis and lasso regression anal-ysis.The risk score was an independent factor influencing patient prognosis[HR=5.406(3.131~9.335),P<0.001].Risk score was positively correlated with multiple suppressive immune cells infil-tration(M2 macrophage,tumor-associated fibroblast).Meanwhile,multiple aberrant expression of immune checkpoint genes and higher TIDE score were found in high-risk group,suggesting that high-risk groups may be more sensitive to immunotherapy.Conclusion:The antioxidant-associ-ated IncRNAs risk score is a good prognostic predictor and can act as a reference in individualized immunotherapy for gastric cancer patients.
9.A new hexacyclic triterpenoid with 13α ,27-cyclopropane ring from Glechoma longituba
Qian ZHANG ; Mei-long LU ; Tian-zi LIU ; Yue-ting ZHANG ; Ao ZHU ; Li-li DING ; Zhu-zhen HAN ; Li-hua GU ; Zheng-tao WANG
Acta Pharmaceutica Sinica 2024;59(5):1334-1340
In order to study the compounds from
10.iTRAQ-based proteomics reveals the mechanism of action of Yinlai decoction in treating pneumonia in mice consuming a high-calorie diet
Qianqian Li ; Tiegang Liu ; Chen Bai ; Xueyan Ma ; Hui Liu ; Zi ; an Zheng ; Yuxiang Wan ; He Yu ; Yuling Ma ; Xiaohong Gu
Journal of Traditional Chinese Medical Sciences 2024;11(1):21-32
Objective:
To uncover the underlying mechanisms of action of the Yinlai decoction on high-calorie diet-induced pneumonia through proteomics analysis.
Methods:
Based on the Gene Expression Omnibus (GEO) database, lung tissue samples from normal and high-fat diet (HFD) fed mice in the GSE16377 dataset were selected as test cohorts to identify differentially expressed genes and conduct bioinformatics analyses. In the animal experiments, mice were randomly divided into the control (N), high-calorie diet pneumonia (M), and Yinlai decoction treatment (Y) groups. Mice in the M group received high-calorie feed and a 0.5 mg/mL lipopolysaccharide solution spray for 30 min for 3 d. The mice in the Y group were intragastrically administered 2 mL/10 g Yinlai decoction twice daily for 3 d. Pathological evaluation of the lung tissue was performed. Differentially expressed proteins (DEPs) in the lung tissue were identified using quantitative proteomics and bioinformatics analyses. The drug-target relationships between Yinlai decoction and core DEPs in the lung tissue were verified using AutoDock Vina and Molecular Graphics Laboratory (MGL) Tools. DEPs were verified by western blot.
Results:
GEO data mining showed that an HFD altered oxidative phosphorylation in mouse lung tissue. The Yinlai decoction alleviated pathological damage to lung tissue and pneumonia in mice that were fed a high-calorie diet. A total of 47 DEPs were identified between the Y and M groups. Enrichment analysis revealed their association with energy metabolism pathways such as the tricarboxylic acid cycle (TCA) and oxidative phosphorylation. The protein-protein interaction network revealed that Atp5a1, Pdha1, and Sdha were the target proteins mediating the therapeutic effects of Yinlai decoction. Molecular docking results suggested that the mechanism of the therapeutic effect of Yinlai decoction involves the binding of brassinolide, praeruptorin B, chrysoeriol, and other components in Yinlai decoction to Atp5a1.
Conclusion
The Yinlai decoction alleviated lung tissue damage and pneumonia in mice that were fed a high-calorie diet by regulating the TCA and oxidative phosphorylation. Our study highlights the importance of a healthy diet for patients with pneumonia and provides a scientific basis for the prevention and treatment of pneumonia through dietary adjustments.


Result Analysis
Print
Save
E-mail