1.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
2.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
7.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
8.Predicting the Risk of Arterial Stiffness in Coal Miners Based on Different Machine Learning Models.
Qian Wei CHEN ; Xue Zan HUANG ; Yu DING ; Feng Ren ZHU ; Jia WANG ; Yuan Jie ZOU ; Yuan Zhen DU ; Ya Jun ZHANG ; Zi Wen HUI ; Feng Lin ZHU ; Min MU
Biomedical and Environmental Sciences 2024;37(1):108-111
9.Analysis of recognition sites and application for commercial and homemade antibodies to aquaporin 9
Quan-Cheng CHENG ; Hui-Ru DING ; Zi-Yuan WANG ; Jin-Yu FANG ; Xiao-Li ZHANG ; Wei-Guang ZHANG
Acta Anatomica Sinica 2024;55(2):237-240
Objective To analyze the antigen recognition sites of commercial and homemade antibodies against aquaporin(AQP)9,and to identify the application effect.Methods Western blotting was used to compare the efficacy of three commercial antibodies and self-made antibody in identifying AQP9 genotypes.The antigen recognition sites of four antibodies and their specificities in practical applications were analyzed.Results Western blotting showed that protein bands of three commercial antibodies were detected in both WT and Aqp9-/-mice.The keyhole limpet hemocyanin(KLH)conjugated synthetic peptides corresponding to the three commercial antibodies were derived from rat,human and human,respectively.And The sequences of these three synthetic peptides were different from those of mice.AQP3/7 and AQP9 have similar molecular weight and were expressed in the liver with high homology.An obvious band of self-made antibody was observed at the 27 kD position in WT mice,but no band was observed at the corresponding position in Aqp9-/-mice.Conclusion Commercial antibodies 1 and 3 can be used to assist in the identification of genotypes in Aqp9-/-mice.Homemade antibodies can accurately identify genotypes at the protein level.
10.Analysis of risk factors and severity prediction of acute pancreatitis induced by pegaspargase in children
Xiaorong LAI ; Lihua YU ; Lulu HUANG ; Danna LIN ; Li WU ; Yajie ZHANG ; Juan ZI ; Xu LIAO ; Yuting YUAN ; Lihua YANG
Chinese Journal of Applied Clinical Pediatrics 2024;39(3):170-175
Objective:To analyze the risk factors for asparaginase-associated pancreatitis (AAP) in children with acute lymphoblastic leukemia (ALL) after treatment with pegaspargase and evaluate the predictive value of pediatric sequential organ failure assessment (SOFA) score, pediatric acute pancreatitis severity (PAPS) score, Ranson′s score and pediatric Ministry of Health, Labour and Welfare of Japan (JPN) score for severe AAP.Methods:Cross-sectional study.The clinical data of 328 children with ALL who received pegaspargase treatment in the Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University from January 2014 to August 2021, as well as their clinical manifestations, laboratory examinations, and imaging examinations were collected.The SOFA score at the time of AAP diagnosis, PAPS score and Ranson′s score at 48 hours after AAP diagnosis, and JPN score at 72 hours after AAP diagnosis were calculated, and their predictive value for severe AAP was evaluated by the receiver operating characteristic (ROC) curve.Results:A total of 6.7%(22/328) of children had AAP, with the median age of 6.62 years.AAP most commonly occurred in the induced remission phase (16/22, 72.7%). Three AAP children were re-exposed to asparaginase, and 2 of them developed a second AAP.Among the 22 AAP children, 16 presented with mild symptoms, and 6 with severe symptoms.The 6 children with severe AAP were all transferred to the Pediatric Intensive Care Unit (PICU). There were no significant differences in gender, white blood cell count at first diagnosis, immunophenotype, risk stratification, and single dose of pegaspargase between the AAP and non-AAP groups.The age at diagnosis of ALL in the AAP group was significantly higher than that in the non-AAP group ( t=2.385, P=0.018). The number of overweight or obese children in the AAP group was also higher than that in the non-AAP group ( χ2=4.507, P=0.034). The areas under the ROC curve of children′s JPN score, SOFA score, Ranson′s score, and PAPS score in predicting severe AAP were 0.919, 0.844, 0.731, and 0.606, respectively.The JPN score ( t=4.174, P=0.001) and the SOFA score ( t=3.181, P=0.005) showed statistically significant differences between mild and severe AAP. Conclusions:AAP is a serious complication in the treatment of ALL with combined pegaspargase and chemotherapy.Older age and overweight or obesity may be the risk factors for AAP.Pediatric JPN and SOFA scores have predictive value for severe AAP.

Result Analysis
Print
Save
E-mail