1.Research progress of nano drug delivery system based on metal-polyphenol network for the diagnosis and treatment of inflammatory diseases
Meng-jie ZHAO ; Xia-li ZHU ; Yi-jing LI ; Zi-ang WANG ; Yun-long ZHAO ; Gao-jian WEI ; Yu CHEN ; Sheng-nan HUANG
Acta Pharmaceutica Sinica 2025;60(2):323-336
Inflammatory diseases (IDs) are a general term of diseases characterized by chronic inflammation as the primary pathogenetic mechanism, which seriously affect the quality of patient′s life and cause significant social and medical burden. Current drugs for IDs include nonsteroidal anti-inflammatory drugs, corticosteroids, immunomodulators, biologics, and antioxidants, but these drugs may cause gastrointestinal side effects, induce or worsen infections, and cause non-response or intolerance. Given the outstanding performance of metal polyphenol network (MPN) in the fields of drug delivery, biomedical imaging, and catalytic therapy, its application in the diagnosis and treatment of IDs has attracted much attention and significant progress has been made. In this paper, we first provide an overview of the types of IDs and their generating mechanisms, then sort out and summarize the different forms of MPN in recent years, and finally discuss in detail the characteristics of MPN and their latest research progress in the diagnosis and treatment of IDs. This research may provide useful references for scientific research and clinical practice in the related fields.
2.Effects of emodin modulation of the HIF-1α/VEGF pathway on vascular endothelial cells damage in diabetic macroangiopathy rats
Qiu-Xiao ZHU ; Hui-Yao HAO ; Zi-Bo LIU ; Ming GAO ; Fang ZHANG ; Jing ZHOU ; Zhi-Hua HAO ; Li-Hui ZHANG ; Yong-Mei HAO
The Chinese Journal of Clinical Pharmacology 2024;40(6):859-863
Objective To investigate the impact of emodin(EM)on vascular endothelial cell injury in rats with diabetes macroangiopathy by regulating hypoxia inducible factor-1α(HIF-1α)/vascular endothelial growth factor(VEGF)signaling pathway.Methods SD rats were divided into blank group and modeling group,the rats in the modeling group were fed with high fat and high sugar combined with N-nitro-L-arginine methyl ester to build the diabetes macroangiopathy model,and the blank group was fed with ordinary diet.The vascular endothelial cells successfully isolated from the thoracic aorta of rats in blank group and modeling group were named control group and model group,respectively.The vascular endothelial cells in the modeling group were divided into model group,dimethyloxallyl glycine(DMOG)group(10 μmol·L-1DMOG),combined group(80 mg·L-1EM+10 μmol·L-1 DMOG)and experimental-L,-M,-H groups(20,40,80 mg·L-1 EM).The apoptosis of rat vascular endothelial cells was detected by flow cytometry;Western blot was applied to detect the expression of HIF-1αand VEGF proteins in rat vascular endothelial cells.Results The apoptosis rates of vascular endothelial cells in experimental-M,-H groups,DMOG group,combined group,model group and control group were(10.18±0.36)%,(6.28±0.20)%,(24.96±1.18)%,(12.36±0.49)%,(18.76±0.68)%and(4.59±0.26)%;HIF-1α protein levels were 0.96±0.07,0.78±0.06,2.03±0.12,1.05±0.13,1.58±0.12 and 0.69±0.05;VEGF protein levels were 0.59±0.05,0.23±0.02,0.98±0.06,0.63±0.04,0.86±0.07 and 0.11±0.01.The above indexes in the model group were compared with the control,DMOG,experimental-M and experimental-H groups,and the above indexes in the combined group were compared with the experimental-H group,and the differences were statistically significant(all P<0.05).Conclusion EM may inhibit HIF-1α/VEGF pathway to improve vascular endothelial cell injury in rats with diabetes macroangiopathy.
3.Clinicopathological Features and Long-Term Prognostic Role of Human Epidermal Growth Factor Receptor-2 Low Expression in Chinese Patients with Early Breast Cancer:A Single-Institution Study
Qing Zi KONG ; Qun Li LIU ; Qin De HUANG ; Tong Yu WANG ; Jie Jing LI ; Zheng ZHANG ; Xi Xi WANG ; Ling Chuan LIU ; Di Ya ZHANG ; Kang Jia SHAO ; Min Yi ZHU ; Meng Yi CHEN ; Mei LIU ; Hong Wei ZHAO
Biomedical and Environmental Sciences 2024;37(5):457-470
Objective This study aimed to comprehensively analyze and compare the clinicopathological features and prognosis of Chinese patients with human epidermal growth factor receptor 2(HER2)-low early breast cancer(BC)and HER2-IHC0 BC. Methods Patients diagnosed with HER2-negative BC(N=999)at our institution between January 2011 and December 2015 formed our study population.Clinicopathological characteristics,association between estrogen receptor(ER)expression and HER2-low,and evolution of HER2 immunohistochemical(IHC)score were assessed.Kaplan-Meier method and log-rank test were used to compare the long-term survival outcomes(5-year follow-up)between the HER2-IHC0 and HER2-low groups. Results HER2-low BC group tended to demonstrate high expression of ER and more progesterone receptor(PgR)positivity than HER2-IHC0 BC group(P<0.001).The rate of HER2-low status increased with increasing ER expression levels(Mantel-Haenszel χ2 test,P<0.001,Pearson's R=0.159,P<0.001).Survival analysis revealed a significantly longer overall survival(OS)in HER2-low BC group than in HER2-IHC0 group(P=0.007)in the whole cohort and the hormone receptor(HR)-negative group.There were no significant differences between the two groups in terms of disease-free survival(DFS).The discordance rate of HER2 IHC scores between primary and metastatic sites was 36.84%. Conclusion HER2-low BC may not be regarded as a unique BC group in this population-based study due to similar clinicopathological features and prognostic roles.
4.Research progress of nanomedical drug delivery system based on aerobic glycolytic regulation for tumor therapy
Yi-jing LI ; Sheng-nan HUANG ; Zi-ang WANG ; Wei-wei ZHI ; Xia-li ZHU
Acta Pharmaceutica Sinica 2024;59(9):2509-2518
Tumor is one of the serious problems threatening human health. There are some limitations in the delivery of commonly used tumor therapy technologies, and the therapeutic effect is not satisfactory, so new anti-tumor strategies need to be developed. The process of tumor cells using glycolysis to produce energy under aerobic conditions is called aerobic glycolysis, which is closely related to tumor growth, proliferation and metastasis, and can provide a new target spot for tumor treatment. Nano drug delivery system has been widely used in targeted tumor therapy because of its advantages of targeted drug delivery, improved anti-tumor efficacy and reduced toxic side effects. Numerous studies have shown that more and more nano drug delivery systems regulates aerobic glycolytic metabolism by targeting to potential targets such as signaling factors or reaction products of aerobic glycolytic process in tumors, and therefore enhance the anti-tumor effect. This paper reviews the application of nano drug delivery system in regulating tumor aerobic glycolysis, and provides theoretical references for realizing efficient targeted tumor therapy.
5.Chinese expert consensus on targeted and immunotherapy combined with concurrent chemoradiotherapy in the treatment of locally advanced cervical cancer
Ping JIANG ; Zi LIU ; Lichun WEI ; Yunyan ZHANG ; Fengju ZHAO ; Xiangkun YUAN ; Yipeng SONG ; Jing BAI ; Xiaofan LI ; Baosheng SUN ; Lijuan ZOU ; Sha LI ; Yuhua GAO ; Yanhong ZHUO ; Song GAO ; Qin XU ; Xiaohong ZHOU ; Hong ZHU ; Junjie WANG
Chinese Journal of Radiation Oncology 2024;33(10):893-901
Concurrent chemoradiotherapy (CCRT) refers to the simultaneous treatment of chemotherapy and radiotherapy, and the effect of radiotherapy is enhanced with low-dose chemotherapy, which can reduce tumor recurrence and metastasis and improve clinical prognosis of patients. At present, the main factors for the increase of radiosensitivity of concurrent chemotherapy is that concurrent chemotherapy prevents the repair of tumor cells, and chemotherapy and radiotherapy act on different cell cycles and have synergistic effects. However, even for patients with locally advanced cervical cancer (LACC) who have undergone CCRT, the 5-year survival rate is only 60%, which is still not ideal. In order to improve the efficacy, researchers have conducted a series of exploratory studies, which consist of the combination of targeted drugs and immunodrugs, and neoadjuvant regimens before CCRT, etc. Although targeted or immunologic drugs are effective treatment of LACC, in view of the lack of large-scale evidence-based medical evidence, multi-center prospective and randomized phase III clinical trials and high-level articles are needed to improve the level of evidence-based medicine. This consensus summarizes several key evidence-based medical studies published recently, especially the clinical research progress in targeted and immunological therapies, providing reference for domestic peers.
6.Study on the changes of skeletal muscle index during chemoradiotherapy for patients with cervical cancer and its correlation with prognosis
Fan ZHOU ; Jin-Feng BAO ; Hui LU ; Mei-Qing DING ; Li-Ping DENG ; Zi YIN ; Zi-Qi CHEN ; Li-Jing ZHU
Parenteral & Enteral Nutrition 2024;31(4):211-219
Objective:To study the changes in skeletal muscle and serum nutritional indicators during concurrent chemoradiotherapy in cervical cancer patients,and to evaluate their correlation with short-term efficacy and long-term prognosis. Methods:A retrospective analysis was conducted on 114 patients with cervical cancer who underwent radical concurrent chemoradiotherapy in the Department of Oncology,Nanjing Drum Tower Hospital from February 2019 to February 2023. All patients underwent a treatment regimen comprising external beam radiation (EBRT),internal radiation,and concurrent chemotherapy. Serum nutritional data of the patients were collected before radiotherapy,one week,two weeks and five weeks after the onset of radiotherapy. CT images of the patients at the time of simulation and about five weeks after the onset of radiotherapy were imported into the Pinnacle 39.10 planning system,and the skeletal muscle index (SMI) of the third lumbar vertebra (L3) were calculated for each patients. The changes of the serum nutritional indicators of the patients prior to and post EBRT were analyzed statistically. The patients are categorized into two groups according to the baseline SMI:a sarcopenic group consisting of 35 cases and a non-sarcopenic group comprising 79 cases. The therapeutic outcomes between the two groups were compared,and logistic analysis of the relevant factors affecting the occurrence of sarcopenia during radiotherapy was conducted. The survival curves were drawn using Kaplan-Meier method and disease-free survival (DFS) between the two groups was compared using Log Rank test. We used Cox univariate and multivariate regression analysis to identify prognostic factors related to DFS. Results:The serum nutritional indicators of the patient at one week,two weeks,and five weeks after the beginning of EBRT were significantly lower than those before radiotherapy (P<0.05). The SMI from the CT images of simulation at five weeks after the onset of radiotherapy was significantly lower than that before radiotherapy (P<0.001). There was a significant correlation between hemoglobin levels prior to radiotherapy and incidence of sarcopenia during radiotherapy (P=0.046). There was no significant difference in efficacy between the two groups at the end of EBRT (P>0.05). At the end of radiotherapy,the complete response (CR) rate of the non-sarcopenia group was significantly higher than that of the sarcopenia group (P=0.040). However,the objective response rate (ORR) and disease control rate (DCR) of both groups at the end of radiotherapy were 100%. The 2-year DFS of the sarcopenia group and the non-sarcopenia group were 66.7% and 85.5%,respectively,and the difference was statistically significant (P=0.016). Only four patients died during the 2-year follow-up,so OS was not reached. Baseline SMI,serum squamous cell antigen levels prior to radiotherapy,and degree of bone marrow suppression were three independent prognostic factors affecting DFS in the patients. Conclusion:Cervical cancer patients experience significant nutritional loss during chemoradiotherapy,and baseline SMI is significantly correlated with short-term efficacy and long-term prognosis and can serve as a predictive marker for patients with cervical cancer receiving chemoradiotherapy.
7.Study on the Experimental Methodology of Plasma Clot Retraction
Yang-Gan LUO ; Zi-Han LU ; Han-Jing LIAO ; Dou-Dou HAO ; Man-Jing HUANG ; Zhi-Xiang ZHU
Journal of Experimental Hematology 2024;32(4):1271-1277
Objective:To explore the key factors affecting plasma clot retraction and optimize the experimental method of plasma clot retraction,in order to study the regulation of platelet function and evaluate the modulatory effects of drugs on plasma clot retraction.Methods:The effects of different concentrations of thrombin,Ca2+and platelets on plasma clot retraction were studied,and the detection system of plasma clot retraction was optimized.The availability of the detection system was then validated by analyzing the regulatory effects of multiple signaling pathway inhibitors on plasma clot retraction.Results:Through the optimization study of multiple factors,platelet rich plasma(PRP)containing 0.5 mmol/L Ca2+and 40 × 109/L platelets was treated with 0.2 U/ml thrombin to perform plasma clot retraction analysis.After treatment with thrombin for 15 min,plasma clot retracted significantly.After treatment with thrombin for 30 min,the percentage of plasma clot retraction was more than 50%.The regulatory effects of multiple signaling pathway inhibitors on plasma clot retraction were studied in this detection system.PKC inhibitor Go 6983 exhibited a significant inhibitory effect on plasma clot retraction,while PI3K inhibitor Ly294002 and p38 MAPK inhibitor SB203580 slightly suppressed plasma clot retraction.Conclusion:PRP containing 0.5 mmol/L Ca2+and 40 × 109/L platelets can be induced with 0.2 U/ml thrombin to conduct plasma clot retraction analysis,which can be used to study the regulation of platelet function and evaluate the modulatory effects of drugs on plasma clot retraction.
8.Comparison on anti-inflammatory activity of Gynostemma pentaphyllum processed with different methods.
Shu-Yang XU ; Zi-Qing YANG ; Fei TENG ; Xun-Jiang WANG ; Qin HUANG ; De-Zhen JIN ; Min LI ; Shou-Jin LIU ; Zheng-Tao WANG ; Li-Li DING ; Jing-Jing ZHU
China Journal of Chinese Materia Medica 2023;48(19):5235-5243
The aim of this study is to investigate the effects of Gynostemma pentaphyllum dried with two different methods(air drying and heating) on inflammation in acute lung injury(ALI) mice in vivo and in vitro. Lipopolysaccharide(LPS) was sprayed into the airway of wild type C57BL/6J male mice to establish the model, and the drug was injected into the tail vein 24 h after modeling. Lung function, lung tissue wet/dry weight(W/D) ratio, the total protein concentration, interleukin 6(IL-6), IL-1β, and tumor necrosis factor-α(TNF-α) in the bronchoalveolar lavage fluid(BALF), and pathological changes of the lung tissue were used to evaluate the effects of different gypenosides on ALI mice. The results showed that total gypenosides(YGGPs) and the gypenosides substituted with one or two glycosyl(GPs_(1-2)) in the air-dried sample improved the lung function, significantly lowered the levels of IL-1β and TNF-α in BALF, and alleviated the lung inflammation of ALI mice. Moreover, GPs_(1-2) had a more significant effect on inhibiting NO release in RAW264.7 cells. This study showed that different drying methods affected the anti-inflammatory activity of G. pentaphyllum, and the rare saponins in the air-dried sample without heating had better anti-inflammatory activity.
Male
;
Mice
;
Animals
;
Tumor Necrosis Factor-alpha/metabolism*
;
Gynostemma
;
Mice, Inbred C57BL
;
Lung
;
Anti-Inflammatory Agents/metabolism*
;
Interleukin-6/metabolism*
;
Interleukin-1beta/metabolism*
;
Lipopolysaccharides/pharmacology*
9.scRNA-seq reveals that origin recognition complex subunit 6 regulates mouse spermatogonial cell proliferation and apoptosis via activation of Wnt/β-catenin signaling.
Shi-Wei LIU ; Jia-Qiang LUO ; Liang-Yu ZHAO ; Ning-Jing OU ; CHAO-YANG ; Yu-Xiang ZHANG ; Hao-Wei BAI ; Hong-Fang SUN ; Jian-Xiong ZHANG ; Chen-Cheng YAO ; Peng LI ; Ru-Hui TIAN ; Zheng LI ; Zi-Jue ZHU
Asian Journal of Andrology 2023;26(1):46-56
The regulation of spermatogonial proliferation and apoptosis is of great significance for maintaining spermatogenesis. The single-cell RNA sequencing (scRNA-seq) analysis of the testis was performed to identify genes upregulated in spermatogonia. Using scRNA-seq analysis, we identified the spermatogonia upregulated gene origin recognition complex subunit 6 (Orc6), which is involved in DNA replication and cell cycle regulation; its protein expression in the human and mouse testis was detected by western blot and immunofluorescence. To explore the potential function of Orc6 in spermatogonia, the C18-4 cell line was transfected with control or Orc6 siRNA. Subsequently, 5-ethynyl-2-deoxyuridine (EdU) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays, flow cytometry, and western blot were used to evaluate its effects on proliferation and apoptosis. It was revealed that ORC6 could promote proliferation and inhibit apoptosis of C18-4 cells. Bulk RNA sequencing and bioinformatics analysis indicated that Orc6 was involved in the activation of wingless/integrated (Wnt)/ β-catenin signaling. Western blot revealed that the expression of β-catenin protein and its phosphorylation (Ser675) were significantly decreased when silencing the expression of ORC6. Our findings indicated that Orc6 was upregulated in spermatogonia, whereby it regulated proliferation and apoptosis by activating Wnt/β-catenin signaling.
10.Polypeptide from Moschus Suppresses Lipopolysaccharide-Induced Inflammation by Inhibiting NF-κ B-ROS/NLRP3 Pathway.
Jing YI ; Li LI ; Zhu-Jun YIN ; Yun-Yun QUAN ; Rui-Rong TAN ; Shi-Long CHEN ; Ji-Rui LANG ; Jiao LI ; Jin ZENG ; Yong LI ; Zi-Jian SUN ; Jun-Ning ZHAO
Chinese journal of integrative medicine 2023;29(10):895-904
OBJECTIVE:
To examine the anti-inflammatory effects and potential mechanisms of polypeptide from Moschus (PPM) in lipopolysaccharide (LPS)-induced THP-1 macrophages and BALB/c mice.
METHODS:
The polypeptide was extracted from Moschus and analyzed by high-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Subsequently, LPS was used to induce inflammation in THP-1 macrophages and BALB/c mice. In LPS-treated or untreated THP-1 macrophages, cell viability was observed by cell counting kit 8 and lactate dehydrogenase release assays; the proinflammatory cytokines and reactive oxygen species (ROS) were measured by enzyme-linked immunosorbent assay and flow cytometry, respectively; and protein and mRNA levels were measured by Western blot and real-time quantitative polymerase chain reaction (qRT-PCR), respectively. In LPS-induced BALB/c mice, the proinflammatory cytokines were measured, and lung histology and cytokines were observed by hematoxylin and eosin (HE) and immunohistochemical (IHC) staining, respectively.
RESULTS:
The SDS-PAGE results suggested that the molecular weight of purified PPM was in the range of 10-26 kD. In vitro, PPM reduced the production of interleukin 1β (IL-1β), IL-18, tumor necrosis factor α (TNF-α), IL-6 and ROS in LPS-induced THP-1 macrophages (P<0.01). Western blot analysis demonstrated that PPM inhibited LPS-induced nuclear factor κB (NF-κB) pathway and thioredoxin interacting protein (TXNIP)/nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome pathway by reducing protein expression of phospho-NF-κB p65, phospho-inhibitors of NF-κB (Iκ Bs) kinase α/β (IKKα/β), TXNIP, NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and pro-caspase-1 (P<0.05 or P<0.01). In addition, qRT-PCR revealed the inhibitory effects of PPM on the mRNA levels of TXNIP, NLRP3, ASC, and caspase-1 (P<0.05 or P<0.01). Furthermore, in LPS-induced BALB/c mice, PPM reduced TNF-α and IL-6 levels in serum (P<0.05 or P<0.01), decreased IL-1β and IL-18 levels in the lungs (P<0.01) and alleviated pathological injury to the lungs.
CONCLUSION
PPM could attenuate LPS-induced inflammation by inhibiting the NF-κB-ROS/NLRP3 pathway, and may be a novel potential candidate drug for treating inflammation and inflammation-related diseases.

Result Analysis
Print
Save
E-mail