1.Design, synthesis and anti-Alzheimer's disease activity evaluation of cinnamyl triazole compounds
Wen-ju LEI ; Zhong-di CAI ; Lin-jie TAN ; Mi-min LIU ; Li ZENG ; Ting SUN ; Hong YI ; Rui LIU ; Zhuo-rong LI
Acta Pharmaceutica Sinica 2025;60(1):150-163
19 cinnamamide/ester-triazole compounds were designed, synthesized and evaluated for their anti-Alzheimer's disease (AD) activity. Among them, compound
2.Synthesis and antibacterial activity evaluation of octapeptin derivatives
He-xian YANG ; A-long CUI ; Yong-jian WANG ; Shi-bo KOU ; Miao LÜ ; Hong YI ; Zhuo-rong LI
Acta Pharmaceutica Sinica 2024;59(1):152-160
Octapeptin has strong antibacterial activity against Gram-negative bacteria such as
3.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
4.Changes in pharmacokinetics of single dose of fentanyl in simulated high altitude in rats
Yukun REN ; Zhuo WANG ; Xudong XIAO ; Zonghong LONG ; Yu LI ; Qiuyue WANG ; Hong LI ; Jiaxing LIAO ; Rong ZHANG
Journal of Army Medical University 2024;46(7):732-737
Objective To explore the pharmacokinetic changes of single dose of fentanyl in rats in a simulated high-altitude and contributing factors.Methods Thirty-six healthy female SD rats(6~8 weeks old,250±20 g)were randomly divided into high-altitude-acute-exposure group(group A),high-altitude-chronic-exposure group(group S)and control group(group C)through random number table,with 12 rats in each group.The group A and S were housed in a low-pressure chamber simulating the high altitude of 5000 m above sea level for 3 and 30 d respectively,and the group C was housed out of the chamber(at an altitude of 300 m).A single dose of fentanyl was administered through the femoral vein to 6 rats randomly selected from each group.Liquid chromatography tandem mass spectrometry(LC-MS/MS)was used to detect blood concentrations of fentanyl and WinNonlin 8.2 software was used to calculate the pharmacokinetic parameters,while blood samples were taken through the femoral artery before and in 1,2,4,8,15,30,60,120 and 180 min after administration.The remaining 6 rats were ultrasonographically assessed for portal vein internal diameter(PVD),peak flow velocity(PVV)and blood flow(PVF),and liver tissues were collected for CYP3A1 protein content assay.Results The blood drug concentrations of fentanyl in the group A and group S were significantly lower than those in the group C at 60,120,and 180 min(P=0.002,P<0.001,P= 0.001).Compared with the group C,the clearance rate(CL)of the group A was increased by 54.06%(P=0.021),and the mean residence time(MRTlast)was shortened by 24.21%(P=0.033);CL of the group S was increased by 50.10%(P=0.041),the area under the concentration-time curve(AUC0-t,AUC0-∞)and MRTlast were reduced by 18.92%(P=0.039),27.54%(P=0.018)and 33.61%(P= 0.004),respectively.PVD and PVF in the group S increased by 10.87%(P=0.006)and 42.50%(P= 0.006)when compared with the group C.The CYP3A1 protein content in the group A was 28.74%,which was higher than that in the group C(P=0.048).Conclusion Fentanyl is cleared significantly faster after a single dose in rats in simulated high-altitude,which may be related to the increased liver blood flow and increased CYP3A1 protein expression in liver.
5.Expert consensus on clinical application of 177Lu-prostate specific membrane antigen radio-ligand therapy in prostate cancer
Guobing LIU ; Weihai ZHUO ; Yushen GU ; Zhi YANG ; Yue CHEN ; Wei FAN ; Jianming GUO ; Jian TAN ; Xiaohua ZHU ; Li HUO ; Xiaoli LAN ; Biao LI ; Weibing MIAO ; Shaoli SONG ; Hao XU ; Rong TIAN ; Quanyong LUO ; Feng WANG ; Xuemei WANG ; Aimin YANG ; Dong DAI ; Zhiyong DENG ; Jinhua ZHAO ; Xiaoliang CHEN ; Yan FAN ; Zairong GAO ; Xingmin HAN ; Ningyi JIANG ; Anren KUANG ; Yansong LIN ; Fugeng LIU ; Cen LOU ; Xinhui SU ; Lijun TANG ; Hui WANG ; Xinlu WANG ; Fuzhou YANG ; Hui YANG ; Xinming ZHAO ; Bo YANG ; Xiaodong HUANG ; Jiliang CHEN ; Sijin LI ; Jing WANG ; Yaming LI ; Hongcheng SHI
Chinese Journal of Clinical Medicine 2024;31(5):844-850,封3
177Lu-prostate specific membrane antigen(PSMA)radio-ligand therapy has been approved abroad for advanced prostate cancer and has been in several clinical trials in China.Based on domestic clinical practice and experimental data and referred to international experience and viewpoints,the expert group forms a consensus on the clinical application of 177Lu-PSMA radio-ligand therapy in prostate cancer to guide clinical practice.
6.Cinobufacini Inhibits Immune Escape of Acute Myeloid Leukemia Cells Through Regulating and Controlling MYH9/USP7/c-MYC Pathway
Rong HUANG ; Kai LIU ; Jing-Quan HAO ; Li-Huai WANG ; Zhuo GAN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(5):1298-1306
Objective To investigate the effect of cinobufacini on immune escape of acute myeloid leukemia(AML)by regulating myosin heavy chain 9(MYH9)/ubiquitin-specific protease 7(USP7)/cellular-myelocytomatosis viral oncogene(c-MYC)pathway.Methods(1)In vivo experiment:a nude mouse xenograft tumor model was established to evaluate the effect of cinobufotalin on the growth and immune escape of AML cells in vivo.(2)In vitro experiments:human AML cell line HL-60 was treated with different concentrations of cinobufacini,cell viability was detected by cell counting kit 8(CCK-8),and HL-60 cell invasion was detected by Transwell assay.HL-60 cells were co-cultured with activated CD8+ T cells,the expression of CD25,the surface marker of CD8+ T cells,was detected by flow cytometry,the levels of cytokines[interleukin-2(IL-2)and interferon(IFN-γ)]in the co-culture supernatant were detected by enzyme-linked immunosorbent assay(ELISA).CytoTox96 non-radioactive cytotoxicity assay was used to evaluate the cytotoxicity of CD8+ T cells to HL-60 cells.The protein expressions of MYH9,USP7 and c-MYC in HL-60 cells were detected by Western Blot.The interaction between MYH9,USP7 and ubiquitination was detected by co-immunoprecipitation(Co-IP)assay.The MYH9 overexpression plasmid was tranfected to verify the mechanism of cinobufacini in AML.Results Cinobufacini treatment inhibited xerograft tumor growth in nude mice and enhanced the anti-tumor ability of CD8+ T cells.Cinobufacini treatment inhibited HL-60 cell viability and invasion in a concentration-dependent manner.Cinobufacini treatment up-regulated the expression of CD25,a surface marker of CD8+ T cells,and also up-regulated the levels of IL-2 and IFN-γ.Cinobufotalin enhanced the toxicity of CD8+ T cells to HL-60 cells.Cinobufacini inhibits the protein expressions of MYH9,USP7 and c-MYC in HL-60 cells.MYH9 promotes c-MYC deubiquitination by recruiting USP7,but cinobufacini inhibits MYH9-mediated c-MYC deubiquitination.Conclusion Cinobufacini can reduce the recruitment of c-MYC by deubiquitinating enzyme USP7 by inhibiting the expression of MYH9,and promote the ubiquitination and degradation of c-MYC,thereby inhibiting the immune escape of AML cells.
7.Development History and Frontier Research Progress of Pharmacokinetics of Traditional Chinese Medicine
Li-Jun ZHU ; Zhuo-Ru HE ; Cai-Yan WANG ; Dan-Yi LU ; Jun-Ling YANG ; Wei-Wei JIA ; Chen CHENG ; Yu-Tong WANG ; Liu YANG ; Zhi-Peng CHEN ; Bao-Jian WU ; Rong ZHANG ; Chuan LI ; Zhong-Qiu LIU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(10):2746-2757
Pharmacokinetics of traditional Chinese medicine(TCM)is a discipline that adopts pharmacokinetic research methods and techniques under the guidance of TCM theories to elucidate the dynamic changes in the absorption,distribution,metabolism and excretion of active ingredients,active sites,single-flavour Chinese medicinal and compounded formulas of TCM in vivo.However,the sources and components of TCM are complex,and the pharmacodynamic substances and mechanisms of action of the majority of TCM are not yet clear,so the pharmacokinetic study of TCM is later than that of chemical medicines,and is far more complex than that of chemical medicines,and its development also confronts with challenges.The pharmacokinetic study of TCM originated in the 1950s and has experienced more than 70 years of development from the initial in vivo study of a single active ingredient,to the pharmacokinetic and pharmacodynamic study of active ingredients,to the pharmacokinetic study of compound and multi-component of Chinese medicine.In recent years,with the help of advanced extraction,separation and analysis technologies,gene-editing animals and cell models,multi-omics technologies,protein purification and structure analysis technologies,and artificial intelligence,etc.,the pharmacokinetics of TCM has been substantially applied in revealing and elucidating the pharmacodynamic substances and mechanisms of action of Chinese medicines,research and development of new drugs of TCM,scientific and technological upgrading of large varieties of Chinese patent medicines,as well as guiding the rational use of medicines in clinics.Pharmacokinetic studies of TCM have made remarkable breakthroughs and significant development in theory,methodology,technology and application.In this paper,the history of the development of pharmacokinetics of TCM and the progress of cutting-edge research was reviewed,with the aim of providing ideas and references for the pharmacokinetics of TCM and related research.
8.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
9.Distribution and resistance surveillance of common pathogens of nosocomial infections in 10 teaching hospitals in China from 2020 to 2021
Shuguang LI ; Binghuai LU ; Yunzhuo CHU ; Rong ZHANG ; Ji ZENG ; Danhong SU ; Chao ZHUO ; Yan JIN ; Xiuli XU ; Kang LIAO ; Zhidong HU ; Hui WANG
Chinese Journal of Laboratory Medicine 2024;47(6):619-628
Objective:To investigate the spectrum and antimicrobial resistance of major pathogens causing nosocomial infections in China during 2020-2021.Methods:A total of 1 311 non-duplicated nosocomial pathogens causing bloodstream infections (BSI, n=670), hospital-acquired pneumonia (HAP, n=394) and intra-abdominal infections (IAI, n=297) were collected from 10 teaching hospitals across China. The minimum inhibitory concentrations (MICs) of clinical common strains were determined using agar dilution or broth microdilution method. Interpretation of reults followed the CLSI M100-Ed33 criteria, with data analysis conducted using WHONET-5.6 software. The Chi-square test was used to compare rates. Results:The most prevalent pathogens causing BSI were Escherichia coli (21.2%, 142/670), Klebsiella pneumoniae (14.9%, 100/670) and Staphylococcus aureus (11.5%, 77/670); the most prevalent pathogens causing HAP were K. pneumoniae (27.7%, 109/394), Acinetobacter baumanii (22.1%, 87/394) and Pseudomonas aeruginosa (18.3%, 72/394). IN IAI, E. coli (24.3%, 60/247), Enterococcus faecium and K. pneumoniae (both 14.6%, 36/247) were dominated. All S. aureus strains were susceptible to tigecycline, linezolid, daptomycin and glycopeptides. Rates of methicillin-resistant S. aureus (MRSA) and coagulase-negative Staphylococcus (MRCNS) were 36.5% (42/115) and 74.5% (38/51), respectively. The rate of vancomycin-resistant E. faecium and E. faecalis was 3.3% (3/90) and 1.9% (1/53), respectively. The prevalence of extended-spectrum β-lactamase (ESBL) was 23.7% (58/245) in K. pneumonia and 60.5% (130/215) in E. coli.The rate of carbapenem-resistant K. pneumonia and E. coli was 29.8% (73/245) and 4.2% (9/215), respectively; the percentage of tigecycline-resistant K. pneumonia and E. coli was 1.6% (4/245) and 0, respectively; the rate of colistin-resistant K. pneumonia and E. coli was 1.6% (4/245) and 2.8% (6/215), respectively; the percentage of ceftazidime/avibactam-resistant K. pneumonia and E. coli was 2.0% (5/245) and 2.3% (5/215), respectively. The rate of carbapenem-resistant A. baumanii and P. aeruginosa was 76.7% (125/163) and 28.4% (33/116), respectively. A. baumanii showed low susceptibility to most antimicrobial agents except colistin (98.8%, 161/163) and tigecycline (89.6%, 146/163). Colistin, amikacin and ceftazidime/avibactam demonstrated high antibacterial activity against P. aeruginosa with susceptility rates of 99.1% (115/116), 94.0% (109/116) and 83.6% (97/116), respectively. Conclusions:The major pathogens of nosocomial infections were K. pneumonia, E. coli, A. baumanii, P. aeruginosa and S. aureus. Nosocomial Gram-negative pathogens exhibited high susceptibilities to tigecycline, colistin and ceftazidime/avibactam. Antimicrobial resistance in A. baumannii remains a significant challenge. The increasing prevalence of carbapenem-resistant Enterobacterales underscores the urgency of antibiotics rational applications and hospital infection controls.
10.Tick-borne pathogens infection of rodents at the border of China and the Democratic People's Republic of Korea
Zhuo WANG ; Qiong WU ; Xiao-Yang HUANG ; Guan-Peng HUANG ; You-Xin MA ; En-Rong MAO ; Guo-Shuang LENG ; Hong-Min ZHAO ; Bing LI ; Yi-Min WU
Chinese Journal of Zoonoses 2024;40(4):323-327
To investigate the existence of tick-borne pathogens infection of rodents at the border of China and the Demo-cratic People's Republic of Korea(DPRK).PCR was used to detect the spotted fever group rickettsiae(SFGR)ompA gene,Ehrlichia chaffeensis(Ec)and Anaplasma phagocytophilum(Ap)16S rRNA,Candidatus Neoehrlichia mikurensis(CNm)groEL gene,Bartonella(Ba)rpoB gene,and Francisella tularensis(Ft)fopA gene in rodents samples collected from Ji'an of Jilin province and Kuandian of Liaoning Province.The positivity rates of 132 wild rats spleen samples,SFGR,Ec,Ap,CNm,Ba,and Ft were 9.85%,12.88%,5.30%,3.79%,51.52%,and 6.06%,respectively,with statistical differences in in-fection rates(x2=149.236,P=0.000).The infection rate of Ba was the highest in wild rats in this area.There was no signifi-cant difference in the infection rate of SFGR,Ec,Ap,CNm,and Ft among different rats species,but there were significant differences in the infection rate of Ba(x2=13.36,P=0.010).The infection rate of Apodemus agrarius was the highest.A-mong 132 wild rats specimens,the coinfection rate of the two pathogens was 15.9%(21/132),with Ba as the main species(15/132),and two cases of coinfection with three pathogens were detected.The infection of six tick-borne pathogens is common in wild rats at the China/DPRK border.Co-infection of two or three pathogens indicates a risk of multiple tick-borne pathogens and mixed natural foci of multiple tick-borne infec-tious diseases.

Result Analysis
Print
Save
E-mail