1.Finite element and biomechanical analysis of different implants in repair for unilateral unstable pelvic posterior ring injury
Cheng LIANG ; Linqi ZHANG ; Guan WANG ; Wen LI ; Ke DUAN ; Zhong LI ; Xiaobo LU ; Naiqiang ZHUO
Chinese Journal of Tissue Engineering Research 2024;28(9):1336-1341
BACKGROUND:The stability of the pelvis is mainly determined by the posterior pelvic ring and the sacroiliac joint.The posterior pelvic ring injury and the dislocation of the sacroiliac joint caused by high energy impacts such as car accidents increase year by year.Surgical treatment is the best method,and there are many kinds of endophytorepair methods in clinical practice,but which treatment method has the best biomechanical properties is still controversial. OBJECTIVE:To compare the biomechanical properties of three kinds of internal implants:anterior double plates,posterior bridging plate and tension nail in the repair of unilateral unstable pelvic posterior ring injury,to provide a reference for the clinical treatment and development of a new pelvic tension screw. METHODS:(1)Finite element simulation:Mimics,Wrap and SolidWorks were used to establish normal pelvic model,unilateral injured pelvis model,and three kinds of internal implant repaired models(anterior double plates,posterior bridging plate and tension nail).Ansys was used to analyze the stress and deformation of the models.(2)Biomechanical test:A total of 15 intact pelvic specimens were randomly grouped into five groups,normal pelvic model,unilateral injured pelvis model,anterior double plates,posterior bridging plate and tension nail groups.The mechanical test was performed using an Instron E10000 testing machine. RESULTS AND CONCLUSION:(1)Simulation:In the normal pelvic model,the average displacement of the sacrum was 0.174 mm,and the maximum stress of the sacral iliac bone was 10.51 MPa,and the stress distribution was uniform.The mean sacral displacement of the unilateral injured pelvis model was 0.267 mm,and the stress concentration of the model was obvious.The mean displacement of the sacrum in the three repaired models was close to that in the normal pelvic model,and the stress distribution of the sacral iliac bone in the tension nail repaired model was uniform.(2)Mechanical test:The stiffness of the normal pelvic model was(226.38±4.18)N/mm,and that of the unilateral unstable pelvic model was the smallest(130.02±2.19)N/mm.The deviation of the normal pelvic model stiffness and the three repaired models'stiffness were all within(±10%),and the repair effect was obvious.(3)The simulation results were in agreement with the experimental results.(4)The biomechanics of the tension nail repaired model was the most similar to that of the normal pelvis,and this method was the best.The repairing stiffness of the anterior double plate was too large,and the stress shielding effect was more significant.The posterior bridging plate repair could not solve the compensatory effect of the normal side soft tissue and had defects.This study provides an optimal basis for clinical surgery.(5)The new type of pelvic tension nail should be improved from the point of view of the tension nail to retain the good biomechanical properties of the tension nail,while adding other advantages,such as being used for the osteoporotic pelvis.
2.Research progress of phage therapy in orthopedic implant-related infection
Zulipikaer MAIMAITI ; Zhuo LI ; Chi XU ; Jun FU ; Libo HAO ; Liang LIU ; Jiying CHEN ; Wei CHAI
Chinese Journal of Surgery 2024;62(1):81-85
The widespread application of implantable materials has brought about a corresponding increase in implant-related complications, with implant-associated infections being the most critical. Biofilms, which often form on these implants, can significantly impede the effectiveness of traditional antibiotic therapies. Therefore, strategies such as surgical removal of infected implants and prolonged antibiotic treatment have been acknowledged as effective measures to eradicate these infections. However,the challenges of antibiotic resistance and biofilm persistence often result in recurrent or hard-to-control infections, posing severe health threats to patients. Recent studies suggest that phages, a type of virus, can directly eliminate pathogenic bacteria and degrade biofilms. Furthermore, clinical trials have demonstrated promising therapeutic results with the combined use of phages and antibiotics. Consequently, this innovative therapy holds significant potential as an effective solution for managing implant-associated infections. This paper rigorously investigates and evaluates the potential value of phage therapy in addressing orthopedic implant-associated infections, based on a comprehensive review of relevant scientific literature.
3.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
4.A pilot study on clinical application of three-dimensional morphological completion of lesioned mandibles assisted by generative adversarial networks
Ye LIANG ; Qian WANG ; Yiyi ZHANG ; Jingjing HUAN ; Jie CHEN ; Huixin WANG ; Zhuo QIU ; Peixuan LIU ; Wenjie REN ; Yujie MA ; Canhua JIANG ; Jiada LI
Chinese Journal of Stomatology 2024;59(12):1213-1220
Objective:To explore the clinical application pathway of the CT generative adversarial networks (CTGANs) algorithm in mandibular reconstruction surgery, aiming to provide a valuable reference for this procedure.Methods:A clinical exploratory study was conducted, 27 patients who visited the Department of Oral and Maxillofacial Surgery, Xiangya Hospital of Central South University between January 2022 and January 2024 and required mandibular reconstruction were selected. The cohort included 16 males and 11 females, with the age of (46.6±11.5) years; among them, 7 cases involved mandibular defects crossing the midline. The CTGANs generator produced 100 images, and the mean squared error (MSE) was calculated for differences between any two generated images. Preoperative cone-beam CT data from 5 patients were used to construct a labeled test database, divided into groups: normal maxilla, normal mandible, diseased mandible, and noise (each group containing 70 cross-sectional images). The CTGANs discriminator was used to evaluate the loss values for each group, and one-way ANOVA and intergroup comparisons were performed. Using the self-developed KuYe multioutcome-option-network generation system (KMG) software, the three-dimensional (3D) completion area of the mandible under cone-beam CT was defined for the 27 patients. The CTGANs algorithm was applied to obtain a reference model for the mandible. Virtual surgery was then performed, utilizing the fibular segment to reconstruct the mandible and design the surgical expectation model. The second-generation combined bone-cutting and prebent reconstruction plate positioning method was used to design and 3D print surgical guides, which were subsequently applied in mandibular reconstruction surgery for the 27 patients. Postoperative cone-beam CT was used to compare the morphology of the reconstructed mandible with the surgical expectation model and the mandibular reference model to assess the three-dimensional deviation.Results:The MSE for the CTGANs generator was 2 411.9±833.6 (95% CI: 2 388.7-2 435.1). No significant difference in loss values was found between the normal mandible and diseased mandible groups ( P>0.05), while both groups demonstrated significantly lower loss values than the maxilla and noise groups ( P<0.001). All 27 patients successfully obtained mandibular reference models and surgical expectation models. In total, 14 162 negative deviation points and 15 346 positive deviation points were observed when comparing the reconstructed mandible morphology with the surgical expectation model, with mean deviations of -1.32 mm (95% CI:-1.33- -1.31 mm) and 1.90 mm (95% CI: 1.04-1.06 mm), respectively. Conclusions:The CTGANs algorithm is capable of generating diverse mandibular reference models that reflect the natural anatomical characteristics of the mandible and closely match individual patient morphology, thereby facilitating the design of surgical expectation models. This method shows promise for application in patients with mandibular defects crossing the midline.
5.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
6.Research progress of phage therapy in orthopedic implant-related infection
Zulipikaer MAIMAITI ; Zhuo LI ; Chi XU ; Jun FU ; Libo HAO ; Liang LIU ; Jiying CHEN ; Wei CHAI
Chinese Journal of Surgery 2024;62(1):81-85
The widespread application of implantable materials has brought about a corresponding increase in implant-related complications, with implant-associated infections being the most critical. Biofilms, which often form on these implants, can significantly impede the effectiveness of traditional antibiotic therapies. Therefore, strategies such as surgical removal of infected implants and prolonged antibiotic treatment have been acknowledged as effective measures to eradicate these infections. However,the challenges of antibiotic resistance and biofilm persistence often result in recurrent or hard-to-control infections, posing severe health threats to patients. Recent studies suggest that phages, a type of virus, can directly eliminate pathogenic bacteria and degrade biofilms. Furthermore, clinical trials have demonstrated promising therapeutic results with the combined use of phages and antibiotics. Consequently, this innovative therapy holds significant potential as an effective solution for managing implant-associated infections. This paper rigorously investigates and evaluates the potential value of phage therapy in addressing orthopedic implant-associated infections, based on a comprehensive review of relevant scientific literature.
7.Evaluation of Mechanical Properties of a Novel Sacroiliac Lag Screw
Cheng LIANG ; Chuanchuan ZHUO ; Guan WANG ; Wen LI ; Ke DUAN ; Zhong LI ; Xiaobo LU ; Naiqiang ZHUO
Journal of Medical Biomechanics 2024;39(2):265-271
Objective To investigate the biomechanical properties of a novel sacroiliac lag screw with a spiral blade.Methods Percutaneous sacroiliac lag screws were used as the controls.Polyurethane material was used to simulate the trabecular bone,and the pullout resistance performance was tested on an Instron mechanical testing machine.Subsequently,pelvic specimens were utilized to analyze the static stiffness and dynamic stability of the novel sacroiliac lag screw in repairing sacroiliac joint injuries under normal standing conditions,with normal pelvis,single-sided sacroiliac joint injury pelvis,percutaneous sacroiliac lag screw-single screw repair,and percutaneous sacroiliac lag screw-double screw repair as controls.Results The damage to the polyurethane material after screw extraction was smaller in the novel sacroiliac lag screw group.The average effective holding displacement of the novel sacroiliac lag screw was significantly greater than that of the percutaneous sacroiliac lag screw(P<0.05).However,the maximum resistance to the pullout force for the percutaneous sacroiliac lag screw was significantly higher than that for the novel sacroiliac lag screw(P<0.05).The stiffness after repair of sacroiliac joint injuries was significantly higher when using a single sacroiliac lag screw than when using two percutaneous sacroiliac lag screws(P<0.05).The displacement amplitude was the highest in the sacroiliac joint injury group,followed by that in the normal group.The displacement amplitudes in the other groups were similar;however,the differences were statistically significant(P<0.05).The dynamic stability of the sacroiliac lag screw repair group was the best,slightly better than that of the percutaneous sacroiliac lag screw-double screw repair group,and the dynamic stability of the sacroiliac joint injury group was the worst.The novel sacroiliac lag screw effectively repaired the sacroiliac joint injuries.Conclusions The novel sacroiliac lag screw can effectively hold the trabecular bone and has practical clinical utility.
8.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
9.Artificial intelligence system for outcome evaluations of human in vitro fertilization-derived embryos
Ling SUN ; Jiahui LI ; Simiao ZENG ; Qiangxiang LUO ; Hanpei MIAO ; Yunhao LIANG ; Linling CHENG ; Zhuo SUN ; Hou Wa TAI ; Yibing HAN ; Yun YIN ; Keliang WU ; Kang ZHANG
Chinese Medical Journal 2024;137(16):1939-1949
Background::In vitro fertilization (IVF) has emerged as a transformative solution for infertility. However, achieving favorable live-birth outcomes remains challenging. Current clinical IVF practices in IVF involve the collection of heterogeneous embryo data through diverse methods, including static images and temporal videos. However, traditional embryo selection methods, primarily reliant on visual inspection of morphology, exhibit variability and are contingent on the experience of practitioners. Therefore, an automated system that can evaluate heterogeneous embryo data to predict the final outcomes of live births is highly desirable. Methods::We employed artificial intelligence (AI) for embryo morphological grading, blastocyst embryo selection, aneuploidy prediction, and final live-birth outcome prediction. We developed and validated the AI models using multitask learning for embryo morphological assessment, including pronucleus type on day 1 and the number of blastomeres, asymmetry, and fragmentation of blastomeres on day 3, using 19,201 embryo photographs from 8271 patients. A neural network was trained on embryo and clinical metadata to identify good-quality embryos for implantation on day 3 or day 5, and predict live-birth outcomes. Additionally, a 3D convolutional neural network was trained on 418 time-lapse videos of preimplantation genetic testing (PGT)-based ploidy outcomes for the prediction of aneuploidy and consequent live-birth outcomes.Results::These two approaches enabled us to automatically assess the implantation potential. By combining embryo and maternal metrics in an ensemble AI model, we evaluated live-birth outcomes in a prospective cohort that achieved higher accuracy than experienced embryologists (46.1% vs. 30.7% on day 3, 55.0% vs. 40.7% on day 5). Our results demonstrate the potential for AI-based selection of embryos based on characteristics beyond the observational abilities of human clinicians (area under the curve: 0.769, 95% confidence interval: 0.709–0.820). These findings could potentially provide a noninvasive, high-throughput, and low-cost screening tool to facilitate embryo selection and achieve better outcomes. Conclusions::Our study underscores the AI model’s ability to provide interpretable evidence for clinicians in assisted reproduction, highlighting its potential as a noninvasive, efficient, and cost-effective tool for improved embryo selection and enhanced IVF outcomes. The convergence of cutting-edge technology and reproductive medicine has opened new avenues for addressing infertility challenges and optimizing IVF success rates.
10.Research progress of phage therapy in orthopedic implant-related infection
Zulipikaer MAIMAITI ; Zhuo LI ; Chi XU ; Jun FU ; Libo HAO ; Liang LIU ; Jiying CHEN ; Wei CHAI
Chinese Journal of Surgery 2024;62(1):81-85
The widespread application of implantable materials has brought about a corresponding increase in implant-related complications, with implant-associated infections being the most critical. Biofilms, which often form on these implants, can significantly impede the effectiveness of traditional antibiotic therapies. Therefore, strategies such as surgical removal of infected implants and prolonged antibiotic treatment have been acknowledged as effective measures to eradicate these infections. However,the challenges of antibiotic resistance and biofilm persistence often result in recurrent or hard-to-control infections, posing severe health threats to patients. Recent studies suggest that phages, a type of virus, can directly eliminate pathogenic bacteria and degrade biofilms. Furthermore, clinical trials have demonstrated promising therapeutic results with the combined use of phages and antibiotics. Consequently, this innovative therapy holds significant potential as an effective solution for managing implant-associated infections. This paper rigorously investigates and evaluates the potential value of phage therapy in addressing orthopedic implant-associated infections, based on a comprehensive review of relevant scientific literature.

Result Analysis
Print
Save
E-mail