1.The Establishment of a Virus-related Lymphoma Risk Warning System and Health Management Model Based on Traditional Chinese Medicine Conditions
Hanjing LI ; Shunan LI ; Zewei ZHUO ; Shunyong WANG ; Qiangqiang ZHENG ; Bingyu HUANG ; Yupeng YANG ; Chenxi QIU ; Ningning CHEN ; He WANG ; Tingbo LIU ; Haiying FU
Journal of Traditional Chinese Medicine 2025;66(4):335-339
Virus-related lymphoma exhibits a dual nature as both a hematologic malignancy and a viral infectious disease, making it more resistant to treatment and associated with poorer prognosis. This paper analyzes the understanding and therapeutic advantages of traditional Chinese medicine (TCM) in virus-related lymphoma. It proposes a TCM-based approach centered around syndrome differentiation, using standardized measurements of the overall TCM condition, multi-omics research of hematologic tumors, and artificial intelligence technologies to identify the "pre-condition" of virus-related lymphoma. A risk warning model will be established to early identify high-risk populations with viral infections that may develop into malignant lymphoma, thereby establishing a risk warning system for virus-related lymphoma. At the same time, a TCM health management approach will be applied to manage and regulate virus-related lymphoma, interrupting its progression and forming a human-centered, comprehensive, continuous health service model. Based on this, a standardized, integrated clinical prevention and treatment decision-making model for virus-related lymphoma, recognized by both Chinese and western medicine, will be established to provide TCM solutions for primary prevention of major malignant tumors.
2.A Fitting Method for Photoacoustic Pump-probe Imaging Based on Phase Correction
Zhuo-Jun XIE ; Hong-Wen ZHONG ; Run-Xiang LIU ; Bo WANG ; Ping XUE ; Bin HE
Progress in Biochemistry and Biophysics 2025;52(2):525-532
ObjectivePhotoacoustic pump-probe imaging can effectively eliminate the interference of blood background signal in traditional photoacoustic imaging, and realize the imaging of weak phosphorescence molecules and their triplet lifetimes in deep tissues. However, background differential noise in photoacoustic pump-probe imaging often leads to large fitting results of phosphorescent molecule concentration and triplet lifetime. Therefore, this paper proposes a novel triplet lifetime fitting method for photoacoustic pump-probe imaging. By extracting the phase of the triplet differential signal and the background noise, the fitting bias caused by the background noise can be effectively corrected. MethodsThe advantages and feasibility of the proposed algorithm are verified by numerical simulation, phantom and in vivo experiments, respectively. ResultsIn the numerical simulation, under the condition of noise intensity being 10% of the signal amplitude, the new method can optimize the fitting deviation from 48.5% to about 5%, and has a higher exclusion coefficient (0.88>0.79), which greatly improves the fitting accuracy. The high specificity imaging ability of photoacoustic pump imaging for phosphorescent molecules has been demonstrated by phantom experiments. In vivo experiments have verified the feasibility of the new fitting method proposed in this paper for fitting phosphoometric lifetime to monitor oxygen partial pressure content during photodynamic therapy of tumors in nude mice. ConclusionThis work will play an important role in promoting the application of photoacoustic pump-probe imaging in biomedicine.
3.Study on the distribution of traditional Chinese medicine syndromes and syndrome elements in lymphoma and the correlation between syndromes and Western medicine clinical indicators
Hanjing LI ; Shunan LI ; Zewei ZHUO ; Shunyong WANG ; Qiangqiang ZHENG ; Bingyu HUANG ; Yupeng YANG ; Chenxi QIU ; Ningning CHEN ; Yanyan QIU ; He WANG ; Tingbo LIU ; Haiying FU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):127-137
Objective:
To investigate the distribution of traditional Chinese medicine (TCM) syndromes and syndrome elements in lymphoma, as well as the correlation between TCM syndromes and Western clinical indicators, in order to analyze associations between TCM syndromes and these indicators.
Methods:
From January 2023 to May 2024, 216 patients with lymphoma who met the inclusion criteria in the Department of Hematology, Third People′s Hospital Affiliated to Fujian University of Traditional Chinese Medicine were enrolled. Four diagnostic methods were applied to perform TCM syndrome differentiation and extract syndrome elements. The correlations between various syndromes and blood test indicators of lactate dehydrogenase (LDH), β2-microglobulin (β2-MG), immunoglobulin G (IgG), immunoglobulin M (IgM), immunoglobulin A (IgA), white blood cell (WBC), hemoglobin (Hb), platelet count (PLT), neutrophil (NEUT), immunohistochemical markers of B-cell lymphoma-6 (BCL6), B-cell lymphoma-2 (BCL2), proto-oncogene MYC, and Ki67 protein expression, Ann Arbor staging, international prognostic index (IPI) score, bone marrow infiltration, concurrent infections during chemotherapy, and post-chemotherapy bone marrow suppression rate were analyzed.
Results:
Five TCM syndromes, ranked by frequency, were syndromes of yin deficiency with phlegm accumulation(41.67%), qi depression with phlegm obstruction(30.56%), cold-phlegm congelation and stagnation(12.96%), phlegm-blood stasis toxin(12.04%), and lingering pathogen due to deficient vital qi(2.77%). Yin deficiency(50.93%) and phlegm(45.37%) were the more prevalent syndrome elements. The TCM syndromes were correlated with β2-MG, PLT, MYC, BCL2/MYC, Ki67 protein expression, and bone marrow infiltration (P<0.05). No statistically significant differences were observed in Ann Arbor staging or IPI score across the syndromes. Compared to the syndrome of cold-phlegm congelation and stagnation, the syndrome of qi depression with phlegm obstruction exhibited higher levels of NEUT, MYC, BCL2/MYC, and Ki67 protein expression, as well as a higher rate of post-chemotherapy bone marrow suppression (P<0.05); the syndrome of phlegm-blood stasis toxin showed higher MYC and BCL2/MYC protein expression and a higher rate of post-chemotherapy bone marrow suppression rate (P<0.05); the syndrome of yin deficiency with phlegm accumulation demonstrated higher MYC and BCL2/MYC protein expression and bone marrow infiltration rates, whereas PLT level was lower (P<0.05); the syndrome of lingering pathogen due to deficient vital qi had higher MYC, BCL2/MYC, and Ki67 protein expression levels, as well as a higher rate of post-chemotherapy bone marrow suppression rate (P<0.05). Compared to the syndrome of qi depression with phlegm obstruction, the syndrome of phlegm-blood stasis toxin exhibited lower Ki67 protein expression (P<0.05); the syndrome of yin deficiency with phlegm accumulation had higher β2-MG level, bone marrow infiltration rate, and rate of concurrent infections during chemotherapy, whereas PLT and NEUT levels and the rate of post-chemotherapy bone marrow suppression rate were lower (P<0.05). Compared to the syndrome of phlegm-blood stasis toxin, the syndrome of yin deficiency with phlegm accumulation had higher β2-MG level, whereas NEUT and the rate of post-chemotherapy bone marrow suppression were lower(P<0.05); the syndrome of lingering pathogen due to deficient vital qi exhibited a higher Ki67 protein expression (P<0.05). Compared to the syndrome of yin deficiency with phlegm accumulation, the syndrome of lingering pathogen due to deficient vital qi also showed a higher Ki67 protein expression(P<0.05).
Conclusion
The syndrome of yin deficiency with phlegm accumulation is relatively common in lymphoma. There is a correlation between TCM syndromes and Western medicine clinical indicators. The presence of heat signs in the syndromes may indicate active disease and poor prognosis, while the presence of strong pathogenic factors and weak vital qi in the syndromes may indicate a severer chemotherapy-related bone marrow suppression.
4.Effect analysis of endolymphatic sac surgery on Meniere’s disease based on propensity score matching
Yu SI ; Shipei ZHUO ; Yan HUANG ; Wuhui HE ; Jingman DENG ; Jintao LOU ; Zhigang ZHANG
Chinese Journal of Clinical Medicine 2025;32(2):165-170
Objective To analyse the clinical efficiency of endolymphatic sac surgery (ESS) in the management of Meniere’s disease (MD). Methods A retrospective analysis was conducted on 274 patients with MD who were hospitalized for treatment in Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University from January 2009 to August 2023. All patients received lifestyle management and drug treatment such as diuretics. For those whose conditions were not well controlled 3 to 6 months after the initial treatment, intratympanic glucocorticoid (ITG) or ESS treatment was carried out. Six months after the treatment, the classes of vertigo relief and hearing changes in the patients were evaluated. After adjusting the confounding factors through propensity score matching (PSM), the impact of ESS on the prognosis of MD patients was evaluated. Results Among 274 patients, 194 and 80 patients underwent ITG and ESS, respectively. Eighty patients were enrolled into each group after PSM. Before and after PSM, the rate of patients reaching vertigo relief class A in ESS group was higher than that in the ITG group (P=0.004); there was no significant difference in hearing preservation between the two groups. Kaplan-Meier curve analysis showed that vertigo relief in the ESS group was better than that in the ITG group (P=0.029); there was no statistically significant difference in hearing preservation between the two groups. Conclusion When the initial treatment for patients with MD is ineffective, choosing ESS is more beneficial than ITG for controlling vertigo.
5.Targeting PPARα for The Treatment of Cardiovascular Diseases
Tong-Tong ZHANG ; Hao-Zhuo ZHANG ; Li HE ; Jia-Wei LIU ; Jia-Zhen WU ; Wen-Hua SU ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2025;52(9):2295-2313
Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.
6.Clinical guidelines for indications, techniques, and complications of autogenous bone grafting.
Jianzheng ZHANG ; Shaoguang LI ; Hongying HE ; Li HAN ; Simeng ZHANG ; Lin YANG ; Wenxing HAN ; Xiaowei WANG ; Jie GAO ; Jianwen ZHAO ; Weidong SHI ; Zhuo WU ; Hao WANG ; Zhicheng ZHANG ; Licheng ZHANG ; Wei CHEN ; Qingtang ZHU ; Tiansheng SUN ; Peifu TANG ; Yingze ZHANG
Chinese Medical Journal 2024;137(1):5-7
7.Synthesis and antibacterial activity evaluation of octapeptin derivatives
He-xian YANG ; A-long CUI ; Yong-jian WANG ; Shi-bo KOU ; Miao LÜ ; Hong YI ; Zhuo-rong LI
Acta Pharmaceutica Sinica 2024;59(1):152-160
Octapeptin has strong antibacterial activity against Gram-negative bacteria such as
8.Penile protection with a self-developed flexible sleeve penile protection device after circumcision: a prospective randomized controlled trial
Pengfei TUO ; Kewei CHEN ; Xinchen LIU ; Guodong ZHU ; Huixing HE ; Tao CAI ; Yuxuan LI ; Xun ZHAO ; Liyuan GE ; Shudong ZHANG ; Lulin MA ; Wei GUO ; Zhuo LIU
Journal of Modern Urology 2024;29(4):363-367
【Objective】 To investigate the protective effects of aflexible sleeve penile protection device on reducing postoperative pain and wound edema in patients after circumcision. 【Methods】 A total of 54 patients who underwent circumcision at Yan’an Branch of Peking University Third Hospital during Feb.1 and May 31, 2023 were enrolled.The patients were randomly divided into the experimental group and control group, with 27 patients in either groups.Patients in the experimental group were treated with a flexible sleeve penis protection device after surgery, and patients in the control group were treated with traditional gauze bandage after surgery.Postoperative pain, wound edema and complications were compared between the two groups. 【Results】 In terms of pain, the visual analogue scale of the experimental group was significantly lower at 6 hours [(1.7±0.9) vs.(3.3±1.9), P<0.001] and 2 days [(2.0±1.3) vs.(3.3±1.3), P<0.001] after surgery than that of the control group, but there were no statistically significant differences between the two groups on the 4th and 7th postoperative days (P>0.05).In terms of edema, the edema score of the experimental group was significantly lower than that of the control group on the 2nd postoperative day [(2.0±1.0) vs.(4.0±0.8), P<0.001] , the 4th postoperative day [(1.5±1.2) vs.(2.6±0.9), P<0.001] , and the 7th postoperative day [(0.9±1.3) vs.(2.3±1.5), P<0.001] .There was no statistically significant difference in the incidence of complications between the two groups (P>0.05). 【Conclusion】 The flexible sleeve penile protection device has significant effects of reducing early postoperative pain and reducing edema in patients undergoing circumcision.
9.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
10.Reconstruction of rat calvarial defects utilizing an ultraviolet-cured hydrogel loaded with bone marrow mesen-chymal stem cells
Meng DING ; Qiang LI ; Xiaoye LI ; Ao HE ; Zhuo DAI ; Heng DONG ; Yongbin MOU
Journal of Prevention and Treatment for Stomatological Diseases 2024;32(5):330-340
Objective To investigate the osteogenic properties of a methacrylated gelatin(GelMA)/bone marrow mesenchymal stem cells(BMSCs)composite hydrogel applied to the skull defect area of rats and to provide an experi-mental basis for the development of bone regeneration biomaterials.Methods This study was approved by the Animal Ethics Committee of Nanjing University.A novel photocurable composite biohydrogel was developed by constructing photoinitiators[lthium phenyl(2,4,6-trimethylbenzoyl)phosphinate,LAP],GelMA,and BMSCs.The surface morphology and elemental composition of the gel were examined using scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDX).The compressive strength of the gel was evaluated using an electronic universal testing ma-chine.After in vitro culture for 1,2,and 5 days,the proliferation of the BMSCs in the hydrogels was assessed using a CCK-8 assay,and their survival and morphology were examined through confocal microscopy.A 5 mm critical bone de-ficiency model was generated in a rat skull.The group receiving composite hydrogel treatment was referred to as the Gel-MA/BMSCs group,whereas the untreated group served as the control group.At the 4th and 8th weeks,micro-CT scans were taken to measure the bone defect area and new bone index,while at the 8th week,skull samples from the defect ar-ea were subjected to H&E staining,van Gieson staining,and Goldner staining to evaluate the quality of bone regenera-tion and new bone formation.Results SEM observed that the solidified GelMA showed a 3D spongy gel network with uniform morphology,the porosity of GelMA was 73.41%and the pore size of GelMA was(28.75±7.13)μm.EDX results showed that C and O were evenly distributed in the network macroporous structure of hydrogel.The hydrogel compres-sion strength was 152 kPa.On the 5th day of GelMA/BMSCs culture,the cellular morphology transitioned from oval to spindle shaped under microscopic observation,accompanied by a significant increase in cell proliferation(159.4%,as determined by the CCK-8 assay).At 4 weeks after surgery,a 3D reconstructed micro-CT image revealed a minimal re-duction in bone defect size within the control group and abundant new bone formation in the GelMA/BMSCs group.At 8 weeks after surgery,no significant changes were observed in the control group's bone defect area,with only limited evi-dence of new bone growth;however,substantial healing of skull defects was evident in the GelMA/BMSCs group.Quan-titative analysis at both the 4-and 8-week examinations indicated significant improvements in the new bone volume(BV),new bone volume/total bone volume(BV/TV),bone surface(BS),and bone surface/total bone volume(BS/TV)in the GelMA/BMSCs group compared to those in the control group(P<0.05).Histological staining showed continuous and dense formation of bone tissue within the defects in the GelMA/BMSCs group and only sporadic formation of new bone,primarily consisting of fibrous connective tissue,at the defect edge in the control group.Conclusion Photocur-ing hydrogel-based stem cell therapy exhibits favorable biosafety profiles and has potential for clinical application by inducing new bone formation and promoting maturation within rat skull defects.


Result Analysis
Print
Save
E-mail