1.Allogeneic lung transplantation in miniature pigs and postoperative monitoring
Yaobo ZHAO ; Ullah SALMAN ; Kaiyan BAO ; Hua KUI ; Taiyun WEI ; Hongfang ZHAO ; Xiaoting TAO ; Xinzhong NING ; Yong LIU ; Guimei ZHANG ; He XIAO ; Jiaoxiang WANG ; Chang YANG ; Feiyan ZHU ; Kaixiang XU ; Kun QIAO ; Hongjiang WEI
Organ Transplantation 2026;17(1):95-105
Objective To explore the feasibility and reference value of allogeneic lung transplantation and postoperative monitoring in miniature pigs for lung transplantation research. Methods Two miniature pigs (R1 and R2) underwent left lung allogeneic transplantation. Complement-dependent cytotoxicity tests and blood cross-matching were performed before surgery. The main operative times and partial pressure of arterial oxygen (PaO2) after opening the pulmonary artery were recorded during surgery. Postoperatively, routine blood tests, biochemical blood indicators and inflammatory factors were detected, and pathological examinations of multiple organs were conducted. Results The complement-dependent cytotoxicity test showed that the survival rate of lymphocytes between donors and recipients was 42.5%-47.3%, and no agglutination reaction occurred in the cross-matching. The first warm ischemia times of D1 and D2 were 17 min and 10 min, respectively, and the cold ischemia times were 246 min and 216 min, respectively. Ultimately, R1 and R2 survived for 1.5 h and 104 h, respectively. Postoperatively, in R1, albumin (ALB) and globulin (GLB) decreased, and alanine aminotransferase increased; in R2, ALB, GLB and aspartate aminotransferase all increased. Urea nitrogen and serum creatinine increased in both recipients. Pathological results showed that in R1, the transplanted lung had partial consolidation with inflammatory cell infiltration, and multiple organs were congested and damaged. In R2, the transplanted lung had severe necrosis with fibrosis, and multiple organs had mild to moderate damage. The expression levels of interleukin-1β and interleukin-6 increased in the transplanted lungs. Conclusions The allogeneic lung transplantation model in miniature pigs may systematically evaluate immunological compatibility, intraoperative function and postoperative organ damage. The data obtained may provide technical references for subsequent lung transplantation research.
2.Study on the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep
Ming QIAO ; Yao ZHAO ; Yi ZHU ; Yexia CAO ; Limei WEN ; Yuehong GONG ; Xiang LI ; Juanchen WANG ; Tao WANG ; Jianhua YANG ; Junping HU
China Pharmacy 2026;37(1):24-29
OBJECTIVE To investigate the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep. METHODS Network pharmacology was employed to identify the active components of L. ruthenicum and their associated disease targets, followed by enrichment analysis. A caffeine‑induced zebrafish model of sleep deprivation was established , and the zebrafish were treated with L. ruthenicum Murr. extract (LRME) at concentrations of 0.1, 0.2 and 0.4 mg/mL, respectively; 24 h later, behavioral changes of zebrafish and pathological alterations in brain neurons were subsequently observed. The levels of inflammatory factors [interleukin-6 (IL-6), IL-1β, IL-10, tumor necrosis factor-α (TNF-α)], oxidative stress markers [superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), catalase (CAT)], and neurotransmitters [5- hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), glutamic acid (Glu), dopamine (DA), and norepinephrine (NE)] were measured. The protein expression levels of protein kinase B1 (AKT1), phosphorylated AKT1 (p-AKT1), epidermal growth factor receptor (EGFR), B-cell lymphoma 2 (Bcl-2), sarcoma proto-oncogene,non-receptor tyrosine kinase (SRC), and heat shock protein 90α family class A member 1 (HSP90AA1) in the zebrafish were also determined. RESULTS A total of 12 active components and 176 intersecting disease targets were identified through network pharmacology analysis. Among these, apigenin, naringenin and others were recognized as core active compounds, while AKT1, EGFR and others served as key targets; EGFR tyrosine kinase inhibitor resistance signaling pathway was identified as the critical pathway. The sleep improvement rates in zebrafish of LRME low-, medium-, and high-dose groups were 54.60%, 69.03% and 77.97%, 开发。E-mail:hjp_yft@163.com respectively, while the inhibition ratios of locomotor distance were 0.57, 0.83 and 0.95, respectively. Compared with the model group, the number of resting counts, resting time and resting distance were significantly increased/extended in LRME medium- and high-dose groups (P<0.05). Neuronal damage in the brain was alleviated. Additionally, the levels of IL-6, IL-1β, TNF-α, MDA, Glu, DA and NE, as well as the protein expression levels of AKT1, p-AKT1, EGFR, SRC and HSP90AA1, were markedly reduced (P<0.05), while the levels of IL-10, SOD, GSH-Px, CAT, 5-HT and GABA, as well as Bcl-2 protein expression, were significantly elevated (P<0.05). CONCLUSIONS L. ruthenicum Murr. demonstrates sleep-improving effects, and its specific mechanism may be related to the regulation of inflammatory responses, oxidative stress, neurotransmitter balance, and the EGFR tyrosine kinase inhibitor resistance signaling pathway.
3.Study on the risk factors and predictive model for acute kidney injury during tacrolimus treatment for pediatric steroid-resistant nephrotic syndrome
Yuqing LIU ; Lei ZHU ; Zhaohuan HAN ; Lei ZHAO
China Pharmacy 2026;37(1):66-71
OBJECTIVE To explore the risk factors for acute kidney injury (AKI) in children with steroid-resistant nephrotic syndrome (SRNS) during tacrolimus treatment and construct a predictive model. METHODS A retrospective selection was made of 155 children diagnosed with SRNS and treated with tacrolimus at Xuzhou Children’s Hospital from January 1, 2022, to December 31, 2023, serving as the study subjects. Various clinical data of the children were collected by reviewing the medical record system. Children who developed AKI during medication were assigned to the AKI group (n=26), and those who did not develop AKI were assigned to the control group (n=129). Univariate and multivariate Logistic regression analyses were used to screen independent risk factors. A clinical predictive model was constructed based on significant variables, and nomogram, calibration curve, receiver operator characteristic curve, and decision curve were drawn to evaluate the model’s performance. RESULTS Univariate analysis showed that blood urea nitrogen (BUN), serum creatinine (Scr), estimated glomerular filtration rate (eGFR), the maximum trough concentration (cmin) of tacrolimus, CYP3A5*3/*3 genotype, concurrent infection, concurrent hypertension, and the use of non-steroidal anti-inflammatory drugs were influencing factors for AKI in children with SRNS during tacrolimus treatment (P<0.05). Multivariate Logistic regression analysis revealed that BUN≥9.58 mmol/L, Scr≥125 μmol/L, eGFR<37 mL/(min·1.73 m2), tacrolimus maximum cmin≥11.26 ng/mL,CYP3A5*3/*3 genotype, concurrent infection, and concurrent hypertension were independent risk factors for AKI in children with SRNS during tacrolimus treatment (P<0.05). The constructed clinical predictive model had an area under the curve of 0.747, showing good agreement between predicted and actual AKI occurrence and demonstrating favorable clinical net benefit in predicting AKI in children. CONCLUSIONS Impaired baseline renal function (elevated BUN, elevated Scr, and decreased eGFR), elevated maximum cmin of tacrolimus, CYP3A5*3/*3 genotype, concurrent infection, and hypertension during treatment are independent risk factors for AKI in children with SRNS during tacrolimus treatment. The established clinical predictive model provides a scientific basis for implementing risk stratification management.
4.Construction and in vitro osteogenic activity study of magnesium-strontium co-doped hydroxyapatite mineralized collagen
WANG Meng ; SUN Yifei ; CAO Xiaoqing ; WEI Yiyuan ; CHEN Lei ; ZHANG Zhenglong ; MU Zhao ; ZHU Juanfang ; NIU Lina
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(1):15-28
Objective:
To investigate the efficacy of magnesium-strontium co-doped hydroxyapatite mineralized collagen (MSHA/Col) in improving the bone repair microenvironment and enhancing bone regeneration capacity, providing a strategy to address the insufficient biomimetic composition and limited bioactivity of traditional hydroxyapatite mineralized collagen (HA/Col) scaffolds.
Methods:
A high-molecular-weight polyacrylic acid-stabilized amorphous calcium magnesium strontium phosphate precursor (HPAA/ACMSP) was prepared. Its morphology and elemental distribution were characterized by high-resolution transmission electron microscopy (TEM) and energy-dispersive spectroscopy. Recombinant collagen sponge blocks were immersed in the HPAA/ACMSP mineralization solution. Magnesium-strontium co-doped hydroxyapatite was induced to deposit within collagen fibers (experimental group: MSHA/Col; control group: HA/Col). The morphological characteristics of MSHA/Col were observed using scanning electron microscopy (SEM). Its crystal structure and chemical composition were analyzed by X-ray diffraction and Fourier transform infrared spectroscopy, respectively. The mineral phase content was evaluated by thermogravimetric analysis. The scaffold's porosity, ion release, and in vitro degradation performance were also determined. For cytological experiments, CCK-8 assay, live/dead cell staining, alkaline phosphatase staining, alizarin red S staining, RT-qPCR, and western blotting were used to evaluate the effects of the MSHA/Col scaffold on the proliferation, viability, early osteogenic differentiation activity, late mineralization capacity, and gene and protein expression levels of key osteogenic markers [runt-related transcription factor 2 (Runx2), collagen type Ⅰ (Col-Ⅰ), osteopontin (Opn), and osteocalcin (Ocn)] in mouse embryonic osteoblast precursor cells (MC3T3-E1).
Results:
HPAA/ACMSP appeared as amorphous spherical nanoparticles under TEM, with energy spectrum analysis showing uniform distribution of carbon, oxygen, calcium, phosphorus, magnesium, and strontium elements. SEM results of MSHA/Col indicated successful complete intrafibrillar mineralization. Elemental analysis showed the mass fractions of magnesium and strontium were 0.72% (matching the magnesium content in natural bone) and 2.89%, respectively. X-ray diffraction revealed characteristic peaks of hydroxyapatite crystals (25.86°, 31°-34°). Infrared spectroscopy results showed characteristic absorption peaks for both collagen and hydroxyapatite. Thermogravimetric analysis indicated a mineral phase content of 78.29% in the material. The scaffold porosity was 91.6% ± 1.1%, close to the level of natural bone tissue. Ion release curves demonstrated sustained release behavior for both magnesium and strontium ions. The in vitro degradation rate matched the ingrowth rate of new bone tissue. Cytological experiments showed that MSHA/Col significantly promoted MC3T3-E1 cell proliferation (130% increase in activity at 72 h, P < 0.001). MSHA/Col exhibited excellent efficacy in promoting osteogenic differentiation, significantly upregulating the expression of osteogenesis-related genes and proteins (Runx2, Col-Ⅰ, Opn, Ocn) (P < 0.01).
Conclusion
The MSHA/Col scaffold achieves dual biomimicry of natural bone in both composition and structure, and effectively promotes osteogenic differentiation at the genetic and protein levels, breaking through the functional limitations of pure hydroxyapatite mineralized collagen. This provides a new strategy for the development of functional bone repair materials
5.Treatment Principles and Paradigm of Diabetic Microvascular Complications Responding Specifically to Traditional Chinese Medicine
Anzhu WANG ; Xing HANG ; Lili ZHANG ; Xiaorong ZHU ; Dantao PENG ; Ying FAN ; Min ZHANG ; Wenliang LYU ; Guoliang ZHANG ; Xiai WU ; Jia MI ; Jiaxing TIAN ; Wei ZHANG ; Han WANG ; Yuan XU ; .LI PINGPING ; Zhenyu WANG ; Ying ZHANG ; Dongmei SUN ; Yi HE ; Mei MO ; Xiaoxiao ZHANG ; Linhua ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):272-279
To explore the advantages of traditional Chinese medicine (TCM) and integrative TCM-Western medicine approaches in the treatment of diabetic microvascular complications (DMC), refine key pathophysiological insights and treatment principles, and promote academic innovation and strategic research planning in the prevention and treatment of DMC. The 38th session of the Expert Salon on Diseases Responding Specifically to Traditional Chinese Medicine, hosted by the China Association of Chinese Medicine, was held in Beijing, 2024. Experts in TCM, Western medicine, and interdisciplinary fields convened to conduct a systematic discussion on the pathogenesis, diagnostic and treatment challenges, and mechanism research related to DMC, ultimately forming a consensus on key directions. Four major research recommendations were proposed. The first is addressing clinical bottlenecks in the prevention and control of DMC by optimizing TCM-based evidence evaluation systems. The second is refining TCM core pathogenesis across DMC stages and establishing corresponding "disease-pattern-time" framework. The third is innovating mechanism research strategies to facilitate a shift from holistic regulation to targeted intervention in TCM. The fourth is advancing interdisciplinary collaboration to enhance the role of TCM in new drug development, research prioritization, and guideline formulation. TCM and integrative approaches offer distinct advantages in managing DMC. With a focus on the diseases responding specifically to TCM, strengthening evidence-based support and mechanism interpretation and promoting the integration of clinical care and research innovation will provide strong momentum for the modernization of TCM and the advancement of national health strategies.
6.Research progress on the regulation of JNK signaling pathway by traditional Chinese medicine for intervention in central nervous system diseases
Hongwei WANG ; Mingliang QIAO ; Chenyi ZHAO ; Pei ZHU ; Zilong WEI ; Yi MENG
China Pharmacy 2026;37(2):257-262
The c-Jun N-terminal kinase (JNK) signaling pathway, a key member of the mitogen-activated protein kinase (MAPK) family, plays a central role in the pathogenesis and progression of central nervous system (CNS) diseases by regulating core biological processes such as apoptosis, inflammatory responses, synaptic plasticity, and autophagy. This article sorts out and analyzes relevant literature published domestically and internationally in recent years, summarizing the mechanisms of action of the JNK signaling pathway in common CNS diseases and the research progress in traditional Chinese medicine (TCM) interventions in CNS diseases through the regulation of the JNK signaling pathway. Studies have shown that active components of TCM, such as berberine, paeoniflorin, and astragaloside Ⅳ, as well as compound formulations like Heixiaoyao san, Ditan tang, and Buyang huanwu tang, can exert neuroprotective effects in various CNS disorders, including Alzheimer’s disease, Parkinson’s disease, cerebral ischemia-reperfusion injury, and epilepsy, by inhibiting the aberrant activation of the JNK signaling pathway, thereby alleviating neuroinflammation, oxidative stress, and neuronal apoptosis, while improving synaptic function and cognitive behavioral deficits, regulating autophagy, and maintaining blood-brain barrier integrity.
7.Current Status and Prospects of Research on the Potential Neurobiological Mechanisms of Acupuncture in the Treatment of Tobacco Dependence
Shumin CHEN ; Jin CHANG ; Chaoren TAN ; Hao ZHU ; Jinsheng YANG ; Zhao LIU ; Yingying WANG
Journal of Traditional Chinese Medicine 2025;66(4):421-426
This paper comprehensively discusses on the potential neurobiological mechanisms of acupuncture in the treatment of tobacco dependence, focusing on three important aspects, including acupuncture's regulation of tobacco dependence behavior, effects of acupuncture on withdrawal syndrome, and the role of acupuncture in preventing relapse. It is found that acupuncture can inhibit drug-seeking behavior by regulating the reward pathway and related neurons, such as dopamine, thus modulating tobacco dependence behavior. It also alleviates withdrawal symptoms by improving the oral environment of smokers and reducing negative emotions after quitting. Furthermore, acupuncture can prevent relapse by decreasing brain network activity related to smoking cravings and improving cognitive brain functions like addiction memory. Currently, research on the specific neurobiological mechanism of acupuncture in treating tobacco dependence and the involved neural circuits is limited. Future research directions are proposed, including the evaluation of clinical effects, exploration of specific therapeutic mechanisms, investigation of brain pathology, and strengthening the exploration of brain functions. Additionally, combining modern technologies to clarify the neural circuits involved in acupuncture intervention will provide a basis for acupuncture treatment of tobacco addiction.
8.Determination method of plasma concentrations of 7 anti-tumor drugs and its application
Jinxiu LYU ; Nan YAN ; Wenjun XU ; Jing ZHAO ; Hua ZHU ; Pengzhou HANG
China Pharmacy 2025;36(4):475-481
OBJECTIVE To establish a method for simultaneous determination of 7 anti-tumor drugs (irinotecan, capecitabine, paclitaxel, docetaxel, tamoxifen, letrozole and methotrexate) in human plasma and apply it to the clinic. METHODS After precipitating with a methanol-acetonitrile mixture (1∶ 1, V/V) containing 0.1% formic acid, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the plasma concentration, using deuterium isotopes of each analyte as internal standards. The chromatography was performed on the Agilent Eclipse Plus C18 column with a gradient elution of water (containing 0.1% formic acid+0.04% 5 mmol/L ammonium formate) as mobile phase A and acetonitrile (containing 0.1% formic acid) as mobile phase B. The flow rate was 0.6 mL/min, and the column temperature was set at 40 ℃ . The sample size was 10 μL, and the analysis lasted for 5.5 min. Electrospray ionization was used in positive and negative ion mode, and multiple reaction monitoring mode was used. The ion pairs used for quantitative analysis were m/z 587.1→167.1 (irinotecan), m/z 360.1→244.1 (capecitabine), m/z 876.4→308.0 (paclitaxel), m/z 830.3→304.2 (docetaxel), m/z 372.1→129.1 (tamoxifen), m/z 284.1→242.1 (letrozole), and m/z 455.0→ 308.0 (methotrexate). A total of 97 patients with malignant tumors in our hospital were selected to measure the plasma concentrations of 7 anti-tumor drugs using the above method. RESULTS The linear ranges of irinotecan, capecitabine, paclitaxel, docetaxel, tamoxifen, letrozole and methotrexate were 2-1 000 ng/mL (r=0.994 3), 20-10 000 ng/mL (r=0.997 5), 2-1 000 ng/mL (r=0.997 9), 1-500 ng/mL (r=0.995 8), 1-500 ng/mL (r=0.995 2), 1-500 ng/mL (r=0.996 4), 10-5 000 (r=0.997 7), respectively. The quantitative lower limits were 2, 20, 2, 1, 1, 1 and 10 ng/mL; RSDs of intra-assay precision were 0.08%-14.86% (n=6). RSDs of inter-batch precision were 1.51%-11.55% (n=3), and the accuracies were 89.17%-114.93% (n=6). The matrix effects ranged from 89.89%-119.74% (n=6). RSDs of the stability tests were 1.98%-14.88% (n=6). The results of E-mail:hangpengzhou@163.com clinical application showed, the average plasma concentrations of irinotecan, capecitabine, paclitaxel and docetaxel were 704.09, 909.40, 36.45, 150.43 ng/mL, respectively. The values of the coefficient of variation were 25.24%, 62.65%, 122.69%, and 92.27%. CONCLUSIONS The established LC-MS/MS method is simple and rapid, and can be used for the simultaneous determination of 7 commonly used anti-tumor drugs in the plasma of patients with malignancy.
9.Research Advances on Anti-inflammatory and Anti-oxidation Effect of Medicinal and Edible Herbs Liver-protecting Chinese Medicine
Jinghan ZHAO ; Zhengwang ZHU ; Linlin WANG ; Pingsheng ZHU ; Mingsan MIAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):293-301
The liver is closely associated with inflammation and the redox response, and inflammation is the body's innate defense system for clearing away harmful stimuli and participating in the liver's wound-healing response.Oxidative stress is associated with the activation of inflammatory pathways, and sustained inflammation and the corresponding regenerative wound healing response can induce fibrosis, cirrhosis, progression to end-stage liver disease or hepatocellular carcinoma, and ultimately death.Some "medicine and food homology" traditional Chinese medicine has been used in clinical effect, showing the ability to protect the liver.This paper reviewed the relationship between liver and oxidative stress response and inflammation response, and sorted out 110 "medicine and food same origin" traditional Chinese medicines based on the Chinese Pharmacopoeia(2020 edition) and the Chinese materia medica.The results showed that common floweringqince fruit, licorice root, cassia seed, emblic,seabuckthorn fruit,Chinese date, honeysuckle, ginger, cape jasmine fruit, platycodon root, lotus leaf, dandelion, reed root, honey, mountain honeysuckle, milkvetch root, glossy ganoderma, Gastrodia gastrodia and eucommia leaf were recorded to have liver protection effects.The liver protection mechanism is mainly anti-inflammatory, antioxidant and lipid peroxidation inhibition. Some Chinese herbs can also play a liver protection role by inhibiting the growth of hepatitis virus and liver cancer cells and regulating bile acid metabolism.In addition, the biological mechanism of its liver protection effect through antioxidant and anti-inflammatory effects in animal experiments was analyzed, and it was found that it plays a role through multiple pathways and multiple targets, providing new ideas for the role of "medicine and food homology" traditional Chinese medicine in the treatment strategy of liver diseases.
10.Research Advances on Anti-inflammatory and Anti-oxidation Effect of Medicinal and Edible Herbs Liver-protecting Chinese Medicine
Jinghan ZHAO ; Zhengwang ZHU ; Linlin WANG ; Pingsheng ZHU ; Mingsan MIAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):293-301
The liver is closely associated with inflammation and the redox response, and inflammation is the body's innate defense system for clearing away harmful stimuli and participating in the liver's wound-healing response.Oxidative stress is associated with the activation of inflammatory pathways, and sustained inflammation and the corresponding regenerative wound healing response can induce fibrosis, cirrhosis, progression to end-stage liver disease or hepatocellular carcinoma, and ultimately death.Some "medicine and food homology" traditional Chinese medicine has been used in clinical effect, showing the ability to protect the liver.This paper reviewed the relationship between liver and oxidative stress response and inflammation response, and sorted out 110 "medicine and food same origin" traditional Chinese medicines based on the Chinese Pharmacopoeia(2020 edition) and the Chinese materia medica.The results showed that common floweringqince fruit, licorice root, cassia seed, emblic,seabuckthorn fruit,Chinese date, honeysuckle, ginger, cape jasmine fruit, platycodon root, lotus leaf, dandelion, reed root, honey, mountain honeysuckle, milkvetch root, glossy ganoderma, Gastrodia gastrodia and eucommia leaf were recorded to have liver protection effects.The liver protection mechanism is mainly anti-inflammatory, antioxidant and lipid peroxidation inhibition. Some Chinese herbs can also play a liver protection role by inhibiting the growth of hepatitis virus and liver cancer cells and regulating bile acid metabolism.In addition, the biological mechanism of its liver protection effect through antioxidant and anti-inflammatory effects in animal experiments was analyzed, and it was found that it plays a role through multiple pathways and multiple targets, providing new ideas for the role of "medicine and food homology" traditional Chinese medicine in the treatment strategy of liver diseases.


Result Analysis
Print
Save
E-mail