1.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
2.Variation Tendency and Prediction of Colorectal Cancer Burden Among Chinese Population from 1990 to 2021
Tongzhou WANG ; Juanfang ZHU ; Jin ZHOU ; Pan ZHANG ; Qin TANG
Cancer Research on Prevention and Treatment 2025;52(4):319-323
Objective To examine the current status and trends of colorectal cancer (CRC) burden among Chinese residents from 1990 to 2021. Methods Data on CRC burden in China, Asia, and the global population from 1990 to 2021 were retrieved from the Global Burden of Disease database for descriptive analysis. An age-period-cohort model was employed to estimate the effects of age, period, and cohort on CRC mortality and to forecast changes in disease burden. Results In 2021, China’s age-standardized mortality rate, prevalence rate, and DALY rate for CRC were higher than global and Asian averages. The estimated annual percentage changes (EAPC) from 1990 to 2021 were −0.49% (95%CI: −0.55% to −0.43%) for mortality, 3.17% (95%CI: 3.03%−3.31%) for prevalence, and −0.62% (95%CI: −0.71% to −0.54%) for DALYs. Areas with high and medium-high sociodemographic indexes (SDIs) showed significant decreases in standardized mortality and DALY rates, but these rates remained higher compared with other regions. CRC mortality increased with age in the Chinese population, more prominently in males than in females. Using the 2002–2006 period as a reference (RR=1), the period effect on CRC mortality risk for women was higher than that for men until 2004, after which it declined considerably. With the 1957 birth cohort as a reference (RR=1), CRC mortality risk generally decreased across subsequent birth cohorts. Predictions indicate that by 2035, the standardized prevalence rate will be 267.21 per 100 000, and the standardized mortality rate will be 12.29 per 100 000. Conclusion From 1990 to 2021, China’s age-standardized CRC mortality and DALY rates have decreased, while the standardized prevalence rate has increased. These findings suggest the government to establish a comprehensive multi-level CRC prevention network.
3.Improvement of myocardial injury by traditional Chinese medicine:mitochondrial calcium homeostasis mediates macrophage autophagy and pyroptosis pathway
Lingyun LIU ; Guixin HE ; Weibin QIN ; Hui SONG ; Liwen ZHANG ; Weizhi TANG ; Feifei YANG ; Ziyi ZHU ; Yangbin OU
Chinese Journal of Tissue Engineering Research 2025;29(6):1276-1284
BACKGROUND:The repair process of myocardial injury involves complex cellular and molecular mechanisms,especially mitochondrial calcium homeostasis,macrophage autophagy and pyroptosis pathways.Traditional Chinese medicine(TCM)has shown significant clinical efficacy in improving myocardial injury,but its mechanism of action needs to be thoroughly investigated. OBJECTIVE:To investigate the role of mitochondrial calcium homeostasis-mediated macrophage autophagy and pyroptosis pathways in myocardial injury,and to summarize the progress of TCM in this field. METHODS:A computerized search was performed for relevant literature from the database inception to March 2024 in the Web of Science,PubMed and CNKI.The search terms were"mitochondrial calcium homeostasis,macrophage autophagy,macrophage pyroptosis,traditional Chinese medicine,myocardial injury,myocardial injury reperfusion"in Chinese and English.Through literature review,we analyzed the relationship between mitochondrial calcium homeostasis and macrophage autophagy and pyroptosis,explored the mechanism of their roles in myocardial injury,and summarized the pathways of multi-targeted,multi-pathway effects of TCM. RESULTS AND CONCLUSION:The maintenance of mitochondrial calcium homeostasis has been found to be closely related to the normal function of cardiomyocytes.Macrophages can participate in the repair process of myocardial injury through autophagy and pyroptosis pathways.Autophagy contributes to cell clearance and regulation of inflammatory response,while pyroptosis affects myocardial repair by releasing inflammatory factors.TCM regulates mitochondrial calcium homeostasis and macrophage function through multiple mechanisms.For example,astragalosid regulates calcium homeostasis by lowering mitochondrial membrane potential and inhibiting cytochrome C,and epimedium glycoside plays a role in reducing β-amyloid deposition.In addition,herbal compounds and single drugs promote myocardial repair by activating or inhibiting specific signaling pathways,such as PI3K/AKT and nuclear factor-κB signaling pathways.Future studies should focus on the interactions between mitochondrial calcium homeostasis,autophagy and pyroptosis pathways,as well as how TCM can exert therapeutic effects through these pathways to provide new strategies and drugs for the treatment of myocardial injury.
4.Longitudinal association of dietary behavior scores trajectories with anxiety and depression symptoms among middle school students in Jiading District, Shanghai
TONG Min, LIU Xinxin, ZHANG qin, JING Guangzhuang, ZHU Yanhong, SHI Huijing
Chinese Journal of School Health 2025;46(5):694-698
Objective:
To analyze the trajectory of dietary behaviors among middle school students in Jiading District, Shanghai, from 2021 to 2023, and longitudinally verify their association with anxiety and depression symptoms, aiming to provide scientific evidence for promoting the mental health of adolescents.
Methods:
The data were sourced from the National Monitoring and Intervention Project on Common Diseases and Health Impact Factors of students in Jiading District, Shanghai. A total of 1 217 middle school students who participated in at least two surveys from 2021 to 2023 were selected as the research objects, and group-based trajectory model was constructed to identify their dietary behavior scores trajectories. Modified Poisson regression was used to investigate the impact of dietary behavior scores trajectories on anxiety and depression, while Logistic regression was employed to explore the association between trajectories and changes in depression score levels.
Results:
The dietary behavior scores trajectories of middle school students were divided into three groups: Persistent Healthy Dietary Behavior (9.5%), Persistent Relatively Unhealthy Dietary Behavior (85.0%), and Persistent Very Unhealthy Dietary Behavior (5.5%). Students who perceived their academic performance as poor and whose parents had a cultural level of high school or below had a significantly lower proportion in the Persistent Healthy Dietary Behavior group compared to students with other characteristics ( χ 2=12.87, 8.69, 6.50, P <0.05). Compared with the Persistent Healthy Dietary Behavior group, the risk of anxiety symptoms in middle school students in the Persistent Very Unhealthy Dietary Behavior group was significantly increased ( aRR=3.04, 95%CI =1.15-8.02); Persistent Relatively Unhealthy Dietary Behavior and Persistent Very Unhealthy Dietary Behavior increased the risk of depressive symptoms ( aRR = 1.80 , 2.45, respectively), and were positively correlated with the increase in depression scores ( aOR =1.70, 2.24) ( P <0.05).
Conclusions
The dietary behavior of middle school students have not changed significantly in the past three years, with persistent unhealthy dietary behavior being the most common. Unhealthy dietary behaviors are positively correlated with the risk of anxiety and depressive symptoms and an increase in depression scores.
5.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
6.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
7.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
8.Incremental effectiveness of two-dose of mumps-containing vaccine in chidren
Chinese Journal of School Health 2025;46(6):883-887
Objective:
To evaluate the incremental vaccine effectiveness (VE) of two dose of the mumps containing vaccine (MuCV) in chidren, so as to provide a basis for optimizing mumps immunization strategies.
Methods:
A 1∶2 frequency matched case-control study was conducted by using reported mumps cases in childcare centers or schools from Lu an, Hefei, Ma anshan and Huainan cities of Anhui Province from September 1, 2023 to June 30, 2024, as a case group(383 cases). And healthy children in the same classroom were selected as a control group(766 cases). The MuCV immunization histories of participants were collected to estimate the incremental VE of the second dose of MuCV against mumps. Group comparisons were performed using the Chi square test or t-test. For matched case-control pairs, the Cox regression model was employed to calculate the odds ratio (OR) with 95% confidence interval (CI) for two dose MuCV vaccination and to estimate the incremental vaccine effectiveness (VE).
Results:
There were no statistically significant differences between the case and control groups regarding gender, age, dosage of MuCV vaccination and the time interval since the last dose vaccination( χ 2/t=0.05, 0.20, 0.94, -0.02, P >0.05). The proportions of the case and control groups vaccinated with two doses of MuCV were 26.63% and 29.37%, respectively, and the overall incremental VE of the second dose of MuCV was 40.73% (95% CI=3.03%-63.77%, P <0.05). Subgroup analyses revealed that the incremental VE for children with a period of ≥1 year between the two doses of MuCV was 54.13% (95% CI=1.90%-78.56%, P <0.05), while for children with a period of <1 year, it was 30.63% (95% CI=-28.59%-62.58%, P >0.05). The incremental VE of the second dose of MuCV was 30.36% (95% CI=-25.95%-61.50%, P >0.05) in kindergarten children and 66.73% (95% CI=14.92%-86.99%, P <0.05) in elementary and secondary school students. The incremental VE was 28.78% (95% CI=-27.46%-60.21%, P >0.05) within five years of the last dose of MuCV vaccination and 66.07% (95% CI=-41.56%-91.87%, P >0.05) for vaccinations administered beyond five years.
Conclusions
The second dose of MuCV may offer additional protection for children; however, extending the interval between two dose of MuCV (<1 year) has shown limited incremental protective effects. Therefore, it is crucial to consider optimizing current immunization strategies for mumps.
9.Epidemiological characteristics and trends of non-suicidal self-injury among middle school students in Jiading District of Shanghai from 2015 to 2023
Chinese Journal of School Health 2025;46(9):1282-1286
Objective:
To analyze the epidemiological characteristics and changing trends of non suicidal self injury (NSSI) behaviors among middle school students in Jiading District of Shanghai, from 2015 to 2023, so as to provide a basis for the development of NSSI prevention and control measures among students.
Methods:
Using a stratified cluster random sampling method, a total of five times for Shanghai Adolescent Health Risk Behavior Surveys were conducted for every two years in Jiading District of Shanghai from 2015 to 2023. A total of 5 231 middle school students from junior high schools and senior high schools were selected for questionnaire surveys. Intergroup comparisons were performed using the x 2 test or the χ 2 trend test, and the JointPoint 5.0 software was used to analyze the changing trends, with the annual percent change (APC) used for evaluation. A binary Logistic regression model was employed to analyze the related factors of NSSI behavior among middle school students.
Results:
In 2023, the reported NSSI rate among middle school students in Jiading District was 14.2%. The rate was significantly higher among junior high school students (17.1%) than that among senior high school students (11.1%), and higher among females (19.2%) than that among males (10.0%) ( χ 2=10.04, 23.21, both P <0.01). From 2015 to 2023, the overall reported NSSI rate showed an increasing trend, rising from 8.6% in 2015 to 14.2% in 2023 ( χ 2 trend =22.25), with an APC of 6.64% ( t =3.49), and the APC for girls was 9.79 % ( t =3.20) (all P <0.05). Among students reporting NSSI, the proportion experiencing ≥6 episodes increased from 10.8% in 2015 to 19.2% in 2023 ( χ 2 trend =6.57, P <0.05). Multivariate Logistic regression analysis indicated that girls, junior high school students, those with insomnia, depressive emotion and drinkers had higher risks of NSSI, compared to boys, senior high school students, those without insomnia, non depressive emotion students and non drinkers ( OR =1.71, 1.96, 3.44, 4.76, 1.77, all P < 0.05 ).
Conclusions
The reported rate of NSSI among middle school students in Jiading District of Shanghai, increased annually from 2015 to 2023, and the proportion of repeated NSSI also showed an upward trend. Early intervention measures targeting middle school students, especially junior high school students and females, should be implemented to prevent and control its occurrence and development.
10.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention.


Result Analysis
Print
Save
E-mail