1.Factors affecting benefit finding among young and middle-aged patients with type 2 diabetes mellitus
WU Chenghui ; PENG Yanhong ; ZHANG Ke ; ZHU Weiye ; DENG Liang ; TAN Lingling ; QU Dandan ; MI Qiuxiang
Journal of Preventive Medicine 2026;38(1):31-35
Objective:
To investigate the current status of benefit finding among young and middle-aged patients with type 2 diabetes mellitus (T2DM) and analyze its influencing factors, so as to provide a reference for improving the level of benefit finding in this population.
Methods:
From November 2022 to May 2023, young and middle-aged patients with T2DM aged 18-59 years hospitalized in the endocrinology departments of 2 tertiary hospitals in Hengyang City, Hunan Province were selected as survey subjects by a convenience sampling method. Basic demographic information was collected using a general questionnaire survey. Benefit finding, resourcefulness, and stigma were evaluated using the Benefit Finding Scale, the Chinese Version of the Resourcefulness Scale, and the Type 2 Diabetes Stigma Assessment Scale, respectively. A multiple linear regression model was used to analyze the influencing factors of benefit finding among young and middle-aged patients with T2DM.
Results:
A total of 305 young and middle-aged patients with T2DM were investigated, including 222 males (72.79%) and 83 females (27.21%). There were 231 cases aged 45-59 years, accounting for 75.74%. The scores for benefit finding, resourcefulness, and stigma were (42.86±6.06), (75.12±11.30), and (41.20±10.10), respectively. Multiple linear regression analysis showed that young and middle-aged patients with T2DM who were male (β′=0.088), aged 18-<45 years (β′=0.083), absence of diabetes complications (β′=0.124), and had higher resourcefulness scores (β′=0.679) had higher levels of benefit finding, while patients with higher stigma scores (β′=-0.097) had lower levels of benefit finding.
Conclusion
The level of benefit finding among young and middle-aged patients with T2DM was moderate, and was related to gender, age, diabetes complications, resourcefulness, and stigma.
2.Effect of Gynostemma pentaphyllum Alcohol Extract on Glucose and Lipid Metabolism Disorders in db/db Mice Based on Transcriptomics and Gut Microbiota
Yifei ZHU ; Lei DING ; Wei LIU ; Yahui SUN ; Lingling QIN ; Lili WU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):80-89
ObjectiveTo investigate the efficacy and underlying mechanisms of Gynostemma pentaphyllum alcohol extract in improving glucose and lipid metabolism disorders in db/db mice through transcriptomics and gut microbiota analysis. MethodsEighteen db/db mice were randomly assigned to the model(DM) group, metformin(MET) group, and G. pentaphyllum alcohol extract(GP) group, with six mice in each group, based on stratification of fasting blood glucose and body weight. An additional six db/m mice were selected as the normal control(NC) group. Mice in the NC and DM groups were administered deionized water (10 mL·kg-1) daily. The MET group received metformin (0.195 g·kg-1) by gavage. The GP group was treated with G. pentaphyllum alcohol extract (3.9 g·kg-1) by gavage for six weeks. Fasting blood glucose was measured every two weeks. After six weeks of intervention, serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CREA), and blood urea nitrogen (BUN) were assessed. Enzyme-linked immunosorbent assay (ELISA) was used to measure insulin (FINS), adiponectin (ADP), and tumor necrosis factor-α (TNF-α). Hematoxylin-eosin (HE) staining was used to observe liver histomorphology, periodic acid-Schiff (PAS) staining was employed to assess hepatic glycogen synthesis, and Oil Red O staining was used to detect hepatic lipid deposition. Liver transcriptomic data were used to identify differentially expressed genes in the liver and conduct enrichment analysis. Real-time PCR was employed to verify the expression levels of adiponectin gene (Adipoq), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), glucokinase (GCK), forkhead box (Fox)O1, FoxO3, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6PC). Metagenomic sequencing was conducted to analyze changes in gut microbiota composition. ResultsCompared with the NC group, the DM group exhibited significantly elevated fasting blood glucose (P<0.01), serum AST, ALT, TC, TG, LDL-C, and HDL-C (P<0.01). FINS, homeostatic model assessment for insulin resistance (HOMA-IR), and the inflammatory cytokine TNF-α were significantly increased (P<0.01), while ADP was significantly decreased (P<0.05). Histological analysis confirmed severe hepatic steatosis and excessive lipid accumulation in the DM group, along with markedly reduced glycogen synthesis. Compared with the DM group, the GP group showed significantly decreased fasting blood glucose (P<0.01), reduced serum TC, LDL-C, and HDL-C levels (P<0.05), significantly decreased serum TG and AST levels (P<0.01), significantly reduced FINS, HOMA-IR, and TNF-α levels (P<0.01), and significantly increased ADP (P<0.01). Hepatic steatosis and lipid deposition were significantly alleviated, while glycogen synthesis was markedly enhanced. Transcriptomic differential and enrichment analyses suggested that the mechanisms by which G. pentaphyllum alcohol extract improved hepatic glucose and lipid metabolism in db/db mice may involve regulation of the AMPK and FoxO signaling pathways. Real-time PCR results confirmed that expression of PGC-1α, PEPCK, G6PC, FoxO1, and FoxO3 was significantly downregulated following treatment with G. pentaphyllum alcohol extract (P<0.05, P<0.01), whereas mRNA expression of Adipoq, PPARα, GCK, and AMPK was significantly upregulated (P<0.05, P<0.01). Metagenomic analysis showed that the relative abundance of Lactobacillus, Alistipes, and Akkermansia species was higher in the GP group than in the DM group. ConclusionG. pentaphyllum alcohol extract may improve glucose and lipid metabolism disorders in db/db mice by regulating the hepatic AMPK/PPARα pathway to suppress lipid deposition and alleviate hepatic steatosis, by inhibiting gluconeogenesis through the AMPK/PGC-1α and FoxO pathways to lower fasting blood glucose, and by increasing the abundance of beneficial gut bacteria such as Lactobacillus, Alistipes, and Akkermansia to restore gut microbiota balance.
3.Effect of Gynostemma pentaphyllum Alcohol Extract on Glucose and Lipid Metabolism Disorders in db/db Mice Based on Transcriptomics and Gut Microbiota
Yifei ZHU ; Lei DING ; Wei LIU ; Yahui SUN ; Lingling QIN ; Lili WU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):80-89
ObjectiveTo investigate the efficacy and underlying mechanisms of Gynostemma pentaphyllum alcohol extract in improving glucose and lipid metabolism disorders in db/db mice through transcriptomics and gut microbiota analysis. MethodsEighteen db/db mice were randomly assigned to the model(DM) group, metformin(MET) group, and G. pentaphyllum alcohol extract(GP) group, with six mice in each group, based on stratification of fasting blood glucose and body weight. An additional six db/m mice were selected as the normal control(NC) group. Mice in the NC and DM groups were administered deionized water (10 mL·kg-1) daily. The MET group received metformin (0.195 g·kg-1) by gavage. The GP group was treated with G. pentaphyllum alcohol extract (3.9 g·kg-1) by gavage for six weeks. Fasting blood glucose was measured every two weeks. After six weeks of intervention, serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CREA), and blood urea nitrogen (BUN) were assessed. Enzyme-linked immunosorbent assay (ELISA) was used to measure insulin (FINS), adiponectin (ADP), and tumor necrosis factor-α (TNF-α). Hematoxylin-eosin (HE) staining was used to observe liver histomorphology, periodic acid-Schiff (PAS) staining was employed to assess hepatic glycogen synthesis, and Oil Red O staining was used to detect hepatic lipid deposition. Liver transcriptomic data were used to identify differentially expressed genes in the liver and conduct enrichment analysis. Real-time PCR was employed to verify the expression levels of adiponectin gene (Adipoq), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), glucokinase (GCK), forkhead box (Fox)O1, FoxO3, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6PC). Metagenomic sequencing was conducted to analyze changes in gut microbiota composition. ResultsCompared with the NC group, the DM group exhibited significantly elevated fasting blood glucose (P<0.01), serum AST, ALT, TC, TG, LDL-C, and HDL-C (P<0.01). FINS, homeostatic model assessment for insulin resistance (HOMA-IR), and the inflammatory cytokine TNF-α were significantly increased (P<0.01), while ADP was significantly decreased (P<0.05). Histological analysis confirmed severe hepatic steatosis and excessive lipid accumulation in the DM group, along with markedly reduced glycogen synthesis. Compared with the DM group, the GP group showed significantly decreased fasting blood glucose (P<0.01), reduced serum TC, LDL-C, and HDL-C levels (P<0.05), significantly decreased serum TG and AST levels (P<0.01), significantly reduced FINS, HOMA-IR, and TNF-α levels (P<0.01), and significantly increased ADP (P<0.01). Hepatic steatosis and lipid deposition were significantly alleviated, while glycogen synthesis was markedly enhanced. Transcriptomic differential and enrichment analyses suggested that the mechanisms by which G. pentaphyllum alcohol extract improved hepatic glucose and lipid metabolism in db/db mice may involve regulation of the AMPK and FoxO signaling pathways. Real-time PCR results confirmed that expression of PGC-1α, PEPCK, G6PC, FoxO1, and FoxO3 was significantly downregulated following treatment with G. pentaphyllum alcohol extract (P<0.05, P<0.01), whereas mRNA expression of Adipoq, PPARα, GCK, and AMPK was significantly upregulated (P<0.05, P<0.01). Metagenomic analysis showed that the relative abundance of Lactobacillus, Alistipes, and Akkermansia species was higher in the GP group than in the DM group. ConclusionG. pentaphyllum alcohol extract may improve glucose and lipid metabolism disorders in db/db mice by regulating the hepatic AMPK/PPARα pathway to suppress lipid deposition and alleviate hepatic steatosis, by inhibiting gluconeogenesis through the AMPK/PGC-1α and FoxO pathways to lower fasting blood glucose, and by increasing the abundance of beneficial gut bacteria such as Lactobacillus, Alistipes, and Akkermansia to restore gut microbiota balance.
4.Concordance and pathogenicity of copy number variants detected by non-invasive prenatal screening in 38,611 pregnant women without fetal structural abnormalities.
Yunyun LIU ; Jing WANG ; Ling WANG ; Lin CHEN ; Dan XIE ; Li WANG ; Sha LIU ; Jianlong LIU ; Ting BAI ; Xiaosha JING ; Cechuan DENG ; Tianyu XIA ; Jing CHENG ; Lingling XING ; Xiang WEI ; Yuan LUO ; Quanfang ZHOU ; Ling LIU ; Qian ZHU ; Hongqian LIU
Chinese Medical Journal 2025;138(4):499-501
5.Intermittent hypoxia aggravates asthma inflammation via NLRP3/IL-1β-dependent pyroptosis mediated by HIF-1α signalling pathway.
Ling ZHOU ; Huojun ZHANG ; Lu LIU ; Fengqin ZHANG ; Lingling WANG ; Pengdou ZHENG ; Zhenyu MAO ; Xiaoyan ZHU ; Guisha ZI ; Lixiang CHEN ; Xiaojing CAI ; Huiguo LIU ; Wei LIU
Chinese Medical Journal 2025;138(14):1714-1729
BACKGROUND:
Asthma is a common chronic inflammatory airway disease and intermittent hypoxia is increasingly recognized as a factor that may impact disease progression. The present study investigated whether intermittent hypoxia (IH) could aggravate asthma by promoting hypoxia-inducible factor-1α (HIF-1α)/nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain-containing protein 3 (NLRP3)/interleukin (IL)-1β-dependent pyroptosis and the inflammatory response and further elucidated the underlying molecular mechanisms involved.
METHODS:
A total of 49 patients diagnosed with severe bronchial asthma and diagnosed by polysomnography were enrolled at Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, between January 2022 and December 2022, and their general data and induced sputum were collected. BEAS-2B cells were treated with IL-13 and subjected to IH. An ovalbumin (OVA)-treated mouse model was also used to assess the effects of chronic intermittent hypoxia (CIH) on asthma. Pyroptosis, the inflammatory response, and related signalling pathways were assessed in vivo and in vitro .
RESULTS:
In this study, as the apnoea and hypopnea index (AHI) increased, the proportion of patients with uncontrolled asthma increased. The proportions of neutrophils and the levels of IL-6, IL-8, HIF-1α and NLRP3 in induced sputum were related to the AHI. NLRP3-mediated pyroptosis, which could be mediated by the HIF-1α signalling pathway, was activated in IL-13 plus IH-treated BEAS-2B cells and in the lungs of OVA/CIH mice. HIF-1α downregulation significantly reduced lung pyroptosis and ameliorated neutrophil inflammation by modulating the NLRP3/IL-1β pathway both in vitro and in vivo . Similarly, pretreatment with LW6, an inhibitor of HIF-1α, effectively blocked the generation of inflammatory cytokines in neutrophils. In addition, administration of the NLRP3 activator nigericin obviously increased lung neutrophil inflammation.
CONCLUSIONS
Obstructive sleep apnoea-hypopnea syndrome (OSAHS) is a risk factor for asthma exacerbation. IH aggravates neutrophil inflammation in asthma via NLRP3/IL-1β-dependent pyroptosis mediated by the HIF-1α signalling pathway, which should be considered a potential therapeutic target for the treatment of asthma with OSAHS.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Humans
;
Asthma/metabolism*
;
Animals
;
Pyroptosis/physiology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Mice
;
Signal Transduction/physiology*
;
Male
;
Hypoxia/metabolism*
;
Female
;
Interleukin-1beta/metabolism*
;
Adult
;
Inflammation/metabolism*
;
Middle Aged
;
Mice, Inbred C57BL
6.Research progress on T cell exhaustion in immunotherapy for patients with hepatocellular carcinoma.
Yang WU ; Tian LI ; Runbing ZHANG ; Yani ZHANG ; Lingling ZHU ; Tingting SHI ; Shunna WANG ; Meixia YANG ; Xiaohui YU ; Jiucong ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):271-277
Hepatocellular carcinoma (HCC) is one of the fastest growing cancers in the world, ranking fourth among the causes of cancer-induced death in the world. At present, the field of HCC treatment is developing rapidly, and immunotherapy has been recognized as a promising treatment method, in which T cells play a key role in HCC immunotherapy. However, in the case of virus infection or in tumor microenvironment (TME), T cells will be continuously stimulated by antigens and then fall into the state of T cell exhaustion (Tex). This state will not only reduce the immunity of patients but also lead to poor efficacy of immunotherapy. Therefore, to deeply analyze the mechanism of Tex and to explore effective strategies to reverse Tex is the key point in the immunotherapy for HCC. This review aims to summarize the mechanism of Tex in HCC patients, and the current situation and shortcomings of drug research and development to reverse Tex at this stage, in order to provide theoretical basis for the optimization of immunotherapy regimen for HCC patients.
Humans
;
Carcinoma, Hepatocellular/therapy*
;
Liver Neoplasms/therapy*
;
Immunotherapy/methods*
;
T-Lymphocytes/immunology*
;
Tumor Microenvironment/immunology*
;
Animals
;
T-Cell Exhaustion
7.Therapeutic mechanism of hederagenin, an active component in Guizhi Fuling Pellets, against cervical cancer in nude mice.
Yinfu ZHU ; Yiran LI ; Yi WANG ; Yinger HUANG ; Kunxiang GONG ; Wenbo HAO ; Lingling SUN
Journal of Southern Medical University 2025;45(7):1423-1433
OBJECTIVES:
To explore the therapeutic mechanism of Guizhi Fuling (GZFL) Pellets against cervical cancer.
METHODS:
Publicly available databases were used to identify the targets of GZFL Pellets and cervical cancer to construct the protein-protein interaction (PPI) network, followed by GO biological process and KEGG pathway enrichment analysis of the hub genes. The "Traditional Chinese Medicine-Active Ingredients-Targets-Pathways" network for GZFL Pellets in cervical cancer treatment was generated using Cytoscape v10.0.0, and molecular docking of the drug and potential targets was performed to predict the specific targets of active components in Guizhi Fuling Pellets. The inhibitory effects of hederagenin, an active ingredient in GZFL Pellets, was tested in cultured cervical cancer cells and in nude mice bearing cervical cancer xenografts.
RESULTS:
GZFL Pellets contain 338 active components targeting 247 action sites. A total of 10127 cervical cancer-related targets were obtained, and among them 195 were identified as potential therapeutic targets of GZFL Pellets for cervical cancer treatment, including the key targets of GABRA1, PTK2, JAK2, HTR3A, GSR, and IL-17. Molecular docking study showed low binding energies of the active components such as hederagenin, campesterol, and stigmasterol for protein-molecule interaction. GO enrichment analysis suggested that GZFL Pellets inhibited cervical cancer primarily by regulating responses to steroid hormones, oxidative stress, and lipopolysaccharides. Among the active components of GZFL Pellets, hederagenin was found to inhibit cervical cancer cells in vitro and significantly reduced STAT3 phosphorylation level in the cancer cells. In nude mice bearing cervical cancer xenografts, hederagenin effectively inhibited tumor growth rate without causing obvious adverse effects.
CONCLUSIONS
GZFL Pellets inhibit cervical cancer cell growth through its multiple active components that target different pathways. Among these components, hederagenin inhibits tumor cell growth possibly by directly binding to JAK2 protein to inhibit STAT3 phosphorylation.
Female
;
Animals
;
Uterine Cervical Neoplasms/pathology*
;
Mice, Nude
;
Humans
;
Mice
;
Oleanolic Acid/therapeutic use*
;
Drugs, Chinese Herbal/therapeutic use*
;
Molecular Docking Simulation
;
Xenograft Model Antitumor Assays
;
Cell Line, Tumor
;
STAT3 Transcription Factor/metabolism*
;
Protein Interaction Maps
;
Janus Kinase 2/metabolism*
8.Exosomes from ectoderm mesenchymal stem cells inhibits lipopolysaccharide-induced microglial M1 polarization and promotes survival of H2O2-exposed PC12 cells by suppressing inflammatory response and oxidative stress
Xiaopeng SUN ; Hang SHI ; Lei ZHANG ; Zhong LIU ; Kewei LI ; Lingling QIAN ; Xingyu ZHU ; Kangjia YANG ; Qiang FU ; Hua DING
Journal of Southern Medical University 2024;44(1):119-128
Objective To investigate the potential value of exosomes derived from rat ectoderm mesenchymal stem cells(EMSCs-exo)for repairing secondary spinal cord injury.Methods EMSCs-exo were obtained using ultracentrifugation from EMSCs isolated from rat nasal mucosa,identified by transmission electron microscope,nanoparticle tracking analysis(NTA),and Western blotting,and quantified using the BCA method.Neonatal rat microglia purified by differential attachment were induced with 100 μg/L lipopolysaccharide(LPS)and treated with 37.5 or 75 mg/L EMSCs-exo.PC12 cells were exposed to 400 μmol/L H2O2 and treated with EMSCs-exo at 37.5 or 75 mg/L.The protein and mRNA expressions of Arg1 and iNOS in the treated cells were determined with Western blotting and qRT-PCR,and the concentrations of IL-6,IL-10,and IGF-1 in the supernatants were measured with ELISA.The viability and apoptosis of PC12 cells were detected using CCK-8 assay and flow cytometry.Results The isolated rat EMSCs showed high expressions of nestin,CD44,CD105,and vimentin.The obtained EMSCs-exo had a typical cup-shaped structure under transmission electron microscope with an average particle size of 142 nm and positivity for CD63,CD81,and TSG101 but not vimentin.In LPS-treated microglia,EMSCs-exo treatment at 75 mg/L significantly increased Arg1 protein level and lowered iNOS protein expression(P<0.05).EMSCs-exo treatment at 75 mg/L,as compared with the lower concentration at 37.5 mg/L,more strongly increased Arg1 mRNA expression and IGF-1 and IL-10 production and decreased iNOS mRNA expression and IL-6 production in LPS-induced microglia,and more effectively promoted cell survival and decreased apoptosis rate of H2O2-induced PC12 cells(P<0.05).Conclusion EMSCs-exo at 75 mg/L can effectively reduce the proportion of M1 microglia and alleviate neuronal apoptosis under oxidative stress to promote neuronal survival,suggesting its potential in controlling secondary spinal cord injury.
9.Exosomes from ectoderm mesenchymal stem cells inhibits lipopolysaccharide-induced microglial M1 polarization and promotes survival of H2O2-exposed PC12 cells by suppressing inflammatory response and oxidative stress
Xiaopeng SUN ; Hang SHI ; Lei ZHANG ; Zhong LIU ; Kewei LI ; Lingling QIAN ; Xingyu ZHU ; Kangjia YANG ; Qiang FU ; Hua DING
Journal of Southern Medical University 2024;44(1):119-128
Objective To investigate the potential value of exosomes derived from rat ectoderm mesenchymal stem cells(EMSCs-exo)for repairing secondary spinal cord injury.Methods EMSCs-exo were obtained using ultracentrifugation from EMSCs isolated from rat nasal mucosa,identified by transmission electron microscope,nanoparticle tracking analysis(NTA),and Western blotting,and quantified using the BCA method.Neonatal rat microglia purified by differential attachment were induced with 100 μg/L lipopolysaccharide(LPS)and treated with 37.5 or 75 mg/L EMSCs-exo.PC12 cells were exposed to 400 μmol/L H2O2 and treated with EMSCs-exo at 37.5 or 75 mg/L.The protein and mRNA expressions of Arg1 and iNOS in the treated cells were determined with Western blotting and qRT-PCR,and the concentrations of IL-6,IL-10,and IGF-1 in the supernatants were measured with ELISA.The viability and apoptosis of PC12 cells were detected using CCK-8 assay and flow cytometry.Results The isolated rat EMSCs showed high expressions of nestin,CD44,CD105,and vimentin.The obtained EMSCs-exo had a typical cup-shaped structure under transmission electron microscope with an average particle size of 142 nm and positivity for CD63,CD81,and TSG101 but not vimentin.In LPS-treated microglia,EMSCs-exo treatment at 75 mg/L significantly increased Arg1 protein level and lowered iNOS protein expression(P<0.05).EMSCs-exo treatment at 75 mg/L,as compared with the lower concentration at 37.5 mg/L,more strongly increased Arg1 mRNA expression and IGF-1 and IL-10 production and decreased iNOS mRNA expression and IL-6 production in LPS-induced microglia,and more effectively promoted cell survival and decreased apoptosis rate of H2O2-induced PC12 cells(P<0.05).Conclusion EMSCs-exo at 75 mg/L can effectively reduce the proportion of M1 microglia and alleviate neuronal apoptosis under oxidative stress to promote neuronal survival,suggesting its potential in controlling secondary spinal cord injury.
10.Evolving landscape of treatments targeting the microenvironment of liver metastases in non-small cell lung cancer
Lingling ZHU ; Xianzhe YU ; Xiaojun TANG ; Chenggong HU ; Lei WU ; Yanyang LIU ; Qinghua ZHOU
Chinese Medical Journal 2024;137(9):1019-1032
Liver metastases (LMs) are common in lung cancer. Despite substantial advances in diagnosis and treatment, the survival rate of patients with LM remains low as the immune-suppressive microenvironment of the liver allows tumor cells to evade the immune system. The impact of LMs on the outcomes of immune checkpoint inhibitors in patients with solid tumors has been the main focus of recent translational and clinical research. Growing evidence indicates that the hepatic microenvironment delivers paracrine and autocrine signals from non-parenchymal and parenchymal cells. Overall, these microenvironments create pre- and post-metastatic conditions for the progression of LMs. Herein, we reviewed the epidemiology, physiology, pathology and immunology, of LMs associated with non-small cell lung cancer and the role and potential targets of the liver microenvironment in LM in each phase of metastasis. Additionally, we reviewed the current treatment strategies and challenges that should be overcome in preclinical and clinical investigations. These approaches target liver elements as the basis for future clinical trials, including combinatorial interventions reported to resolve hepatic immune suppression, such as immunotherapy plus chemotherapy, immunotherapy plus radiotherapy, immunotherapy plus anti-angiogenesis therapy, and surgical resection.


Result Analysis
Print
Save
E-mail