1.Changes and Trends in the microbiological-related standards in the Chinese Pharmacopoeia 2025 Edition
FAN Yiling ; ZHU Ran ; YANG Yan ; JIANG Bo ; SONG Minghui ; WANG Jing ; LI Qiongqiong ; LI Gaomin ; WANG Shujuan ; SHAO Hong ; MA Shihong ; CAO Xiaoyun ; HU Changqin ; MA Shuangcheng, ; YANG Meicheng
Drug Standards of China 2025;26(1):093-098
		                        		
		                        			
		                        			Objective: To systematically analyze the revisions content and technological development trends of microbiological standards in the Chinese Pharmacopoeia (ChP) 2025 Edition, and explore its novel requirements in risk-based pharmaceutical product lifecycle management. 
Methods: A comprehensive review was conducted on 26 microbiological-related standards to summarize the revision directions and scientific implications from perspectives including the revision overview, international harmonization of microbiological standards, risk-based quality management system, and novel tools and methods with Chinese characteristics. 
Results: The ChP 2025 edition demonstrates three prominent features in microbiological-related standards: enhanced international harmonization, introduced emerging molecular biological technologies, and established a risk-based microbiological quality control system. 
Conclusion: The new edition of the Pharmacopoeia has systematically constructed a microbiological standard system, which significantly improves the scientificity, standardization and applicability of the standards, providing a crucial support for advancing the microbiological quality control in pharmaceutical industries of China.
		                        		
		                        		
		                        		
		                        	
2.Stage Treatment of Squamous Cell Carcinoma Based on the Theory of Fire and Heat
Xinyi MA ; Luchang CAO ; Xinmiao WANG ; Guanghui ZHU ; Jie LI
Journal of Traditional Chinese Medicine 2025;66(6):575-580
		                        		
		                        			
		                        			It is believed that the occurrence and development of squamous cell carcinoma (SCC) is closely associated with inflammatory responses. The theory of fire and heat, advocated by LIU Wansu, provides significant clinical guidance for understanding the pathogenesis and treatment of SCC. Based on this theory, the pathological mechanisms and clinical characteristics of SCC at different stages were analyzed. In the precancerous and early stages, the primary pathogenesis is qi stagnation leading to internal generation of constrained heat; in post-surgery, the condition shifts to qi deficiency with latent yin fire; during the treatment phase, the pathogenesis involves accumulation of pathogenic factors, excess toxins, and severe heat toxicity; in the late stage, the main pathology is yin deficiency with toxic heat, and phlegm-stasis obstruction of the internal organs. Corresponding stage-based treatment strategies are proposed. In the early stage, regulating qi movement to dissipate constrained heat; for post-surgery, tonifying qi and raising yang to dispel latent fire; during treatment stage, clearing heat and detoxifying to eliminate cancerous toxins; and in the late stage, nourishing yin and unblocking the bowels to clear deficiency heat. 
		                        		
		                        		
		                        		
		                        	
3.Bioinformatics Reveals Mechanism of Schisandrin B in Inhibiting Ferroptosis to Ameliorate Methionine and Choline Deficiency-induced Fatty Liver Disease in Mice
Zhifeng ZHU ; Wenting LI ; Yongjun CAO ; Yuanyuan LIN ; Yifei LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):74-83
		                        		
		                        			
		                        			ObjectiveNonalcoholic fatty liver disease (NAFLD) is a metabolic stress liver injury. Ferroptosis is involved in the occurrence and development of NAFLD. Exploring the efficacy and mechanism of schisandrin B in treating NAFLD facilitates the development of strategies for the prevention and treatment of NAFLD. MethodsThe molecular structure of schisandrin B was obtained by searching against PubChem, and the related targets were predicted by SwissTargetPrediction. The active ingredients and their targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the high-throughput experiment- and reference-guide database of traditional Chinese medicine (HERB). GeneCards and FerrDb were searched for the targets of NAFLD and ferroptosis. The common targets were taken as the core targets, and the protein-protein interaction network of the core targets was established. DAVID was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Finally, molecular docking was performed between schisandrin B and core targets, and the binding energy was calculated. C57BL/6 mice were fed with a methionine and choline-deficiency (MCD) diet for the modeling of NAFLD. Mice were randomized into normal, model, positive drug (essentiale), and low- and high-dose schisandrin B groups. The body mass and liver index of mice were measured after drug administration. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the serum and those of total cholesterol (TC), triglyceride (TG), malondialdehyde (MDA), glutathione (GSH), and Fe2+ in the liver homogenate were measured by biochemical assay kits. The pathological changes of the liver tissue were observed by hematoxylin-eosin (HE) and red oil O staining. Enzyme-linked immunosorbent assay was employed to determine the levels of interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, and 4-hydroxynonenal (4-HNE) in the serum. Western blotting and real-time PCR were employed to determine the protein and mRNA levels, respectively, of solute carrier family 7 member 11 (SLC7A11), solute carrier family 3 member 2 (SLC3A2), glutathione peroxidase 4 (GPX4), transferrin, and ferritin heavy chain (FTH) in the liver tissue. ResultsA total of 2 370, 2 547, and 1 451 targets of schisandrin B, NAFLD, and ferroptosis were obtained, in which 90 common targets were shared by the three. Enrichment analyses predicted 505 GO terms and 92 KEGG pathways. Molecular docking suggested that schizandrin B had strong binding affinity with the key targets of ferropstosis (SLC7A11 and SLC3A2). Animal experiments showed that schizandrin B significantly decreased the liver index, lowered the levels of ALT, AST, TC, TG, IL-6, IL-1β, and TNF-α, alleviated hepatocyte ballooning and inflammatory cell infiltration, and reduced lipid accumulation in the liver of NAFLD mice. In addition, schisandrin B significantly lowered the levels of MDA, 4-HNE, and Fe2+, elevated the level of GSH, up-regulated the protein and mRNA levels of SLC7A11, SLC3A2, and GPX4, and down-regulated the protein and mRNA levels of transferrin in the liver tissue. ConclusionSchisandrin B can alleviate NAFLD by inhibiting ferroptosis in hepatocytes. 
		                        		
		                        		
		                        		
		                        	
4.Wdr63 Deletion Aggravates Ulcerative Colitis Likely by Affecting Th17/Treg Balance and Gut Microbiota
Hao ZHU ; Meng-Yuan ZHU ; Yang-Yang CAO ; Qiu-Bo YANG ; Zhi-Peng FAN
Progress in Biochemistry and Biophysics 2025;52(1):209-222
		                        		
		                        			
		                        			ObjectiveUlcerative colitis is a prevalent immunoinflammatory disease. Th17/Treg cell imbalance and gut microbiota dysregulation are key factors in ulcerative colitis pathogenesis. The actin cytoskeleton contributes to regulating the proliferation, differentiation, and migration of Th17 and Treg cells. Wdr63, a gene containing the WD repeat domain, participates in the structure and functional modulation of actin cytoskeleton. Recent research indicates that WDR63 may serve as a regulator of cell migration and metastasis via actin polymerization inhibition. This article aims to explore the effect of Wdr63 deletion on Th17/Treg cells and ulcerative colitis. MethodsWe constructed Wdr63-/- mice, induced colitis in mice using dextran sulfate sodium salt, collected colon tissue for histopathological staining, collected mesenteric lymph nodes for flow cytometry analysis, and collected healthy mouse feces for microbial diversity detection. ResultsCompared with wild-type colitis mice, Wdr63-/- colitis mice had a more pronounced shortening of colonic tissue, higher scores on disease activity index and histological damage index, Treg cells decreased and Th17 cells increased in colonic tissue and mesenteric lymph nodes, a lower level of anti-inflammatory cytokine IL-10, and a higher level of pro-inflammatory cytokine IL-17A. In addition, WDR63 has shown positive effects on maintaining intestinal microbiota homeostasis. It maintains the balance of Bacteroidota and Firmicutes, promoting the formation of beneficial intestinal bacteria linked to immune inflammation. ConclusionWdr63 deletion aggravates ulcerative colitis in mice, WDR63 inhibits colonic inflammation likely by regulating Th17/Treg balance and maintains intestinal microbiota homeostasis. 
		                        		
		                        		
		                        		
		                        	
5.Impact of childhood maltreatment and sleep quality on depressive symptoms among middle school students
Chinese Journal of School Health 2025;46(1):73-77
		                        		
		                        			Objective:
		                        			To explore the impact of sleep quality, experience of childhood maltreatment, and their interaction on depressive symptoms among middle school students, so as to provide the reference for early intervention of depressive symptoms among middle school students.
		                        		
		                        			Methods:
		                        			From September to December 2023, a questionnaire survey was conducted among 1 231 students from two secondary schools in Harbin, Heilongjiang Province by a convenient sampling method. The survey included general demographic information, Childhood Trauma Questionnaire Short Form, Pittsburgh Sleep Quality Index and Short Version of Center for Epidemiological Studies Depression Scale. The  Chi square test was used to analyze the differences in depressive symptom, sleep quality and childhood maltreatment among students with different demographic characteristics. Correlation analysis was conducted using Logistic regression, and interaction analysis was performed by both additive and multiplicative interaction models.
		                        		
		                        			Results:
		                        			The detection rate of depressive symptoms among middle school students was 22.7%, and the rate for high school students (35.2%) was significantly higher than that for middle school students (17.0%) ( χ 2=50.35,  P <0.01). The detection rates of depressive symptoms among middle school students with a history of childhood maltreatment and poor sleep quality were 45.8% and 44.0%, respectively. Multivariate Logistic regression analysis showed that compared to students without a history of childhood maltreatment, students with a history of childhood maltreatment had a higher risk of depressive symptoms ( OR =4.49,95% CI =3.31~ 6.09 ,  P <0.01);students with poor sleep quality had a higher risk of depressive symptoms than students with good sleep quality ( OR = 5.99,95% CI =4.37~8.22,  P <0.01).The interaction results showed that the presence of childhood maltreatment and poor sleep quality had an additive interaction on the occurrence of depression in middle school students. Compared with students without childhood maltreatment and having good sleep quality, students with childhood maltreatment and poor sleep quality had a 22.49 times higher risk of developing depression ( OR =22.49,95% CI =14.22~35.59, P <0.01).
		                        		
		                        			Conclusion
		                        			Depressive symptoms among middle school students are associated with childhood maltreatment and poor sleep quality, and there is an additive interaction between childhood maltreatment and poor sleep quality on the impact of depressive symptoms.
		                        		
		                        		
		                        		
		                        	
6.Causal relationship between immune cells and knee osteoarthritis:a two-sample bi-directional Mendelian randomization analysis
Guangtao WU ; Gang QIN ; Kaiyi HE ; Yidong FAN ; Weicai LI ; Baogang ZHU ; Ying CAO
Chinese Journal of Tissue Engineering Research 2025;29(5):1081-1090
		                        		
		                        			
		                        			BACKGROUND:Knee osteoarthritis(KOA)is a common chronic inflammatory disease that causes damage to joint cartilage and surrounding tissues.Immune cells play an important role in the immune-inflammatory response in knee osteoarthritis,but the specific mechanisms involved are still not fully understood. OBJECTIVE:To evaluate the potential causal relationship between 731 immune cell phenotypes and the risk of knee osteoarthritis using Mendelian randomization. METHODS:Summary statistics of genome-wide association studies(GWAS)for 731 immune cell phenotypes(from GCST0001391 to GCST0002121)obtained from the GWAS catalog and GWAS data for knee osteoarthritis from the IEUGWAS database(ebi-a-GCST007090)were used.Inverse variance-weighted method,MR-Egger regression,weighted median method,weighted mode method,and simple mode method were employed to investigate the causal relationship between immune cells and knee osteoarthritis.Sensitivity analyses were conducted to assess the reliability of the Mendelian randomization results.Reverse Mendelian randomization analysis was also performed using the same methods. RESULTS AND CONCLUSION:The forward MR analysis indicated significant causal relationships(FDR<0.20)between knee osteoarthritis and four immune cell phenotypes,namely CD27 on CD24+CD27+in B cells(OR=1.026,P=0.000 26,Pfdr=0.18),CD33 on CD33dim HLA DR-in myeloid cells(OR=1.014,P=0.000 50,Pfdr=0.18),and CD45RA+CD28-CD8br%CD8br in Treg cells(OR=1.001,P=0.000 78,Pfdr=0.18),and PDL-1 on monocytes in mononuclear cells(OR=0.952,P=0.000 98,Pfdr=0.18).These immune cell phenotypes showed direct positive or negative causal associations with the risk of knee osteoarthritis.Reverse Mendelian randomization analysis revealed no significant causal relationships(FDR<0.20)between knee osteoarthritis as exposure and any of the 731 immune cell phenotypes.The results of sensitivity analysis show that the P-values of the Cochran's Q test and the MR-Egger regression method for bidirectional Mendelian randomization were both greater than 0.05,indicating that there is no significant heterogeneity and pleiotropy in the causal effect analysis between immune cell phenotypes and knee osteoarthritis.To conclude,there may be four potential causal relationships between immune cell phenotypes,such as CD27 on CD24+CD27+cells,CD33 on CD33dim HLA DR-cells,CD45RA+CD28-CD8br%CD8br cells,and PDL-1 on monocytes,and knee osteoarthritis.These findings provide valuable clues for studying the biological mechanisms of knee osteoarthritis and exploring early prevention and treatment strategies.They also offer new directions for the development of intervention drugs.
		                        		
		                        		
		                        		
		                        	
7.Analysis of Dynamic Change Patterns of Color and Composition During Fermentation of Myristicae Semen Koji
Zhenxing WANG ; Mengmeng FAN ; Le NIU ; Suqin CAO ; Hongwei LI ; Zhenling ZHANG ; Hanwei LI ; Jianguang ZHU ; Kai LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):222-229
		                        		
		                        			
		                        			ObjectiveTo explore the changes in volatile components, total polysaccharides, enzyme activity, and chromaticity value of Myristicae Semen Koji(MSK) during the fermentation process, and conduct correlation analysis. MethodsBased on gas chromatography-mass spectrometry(GC-MS), the changes of volatile components in MSK at different fermentation times were identified. The phenol sulfuric acid method, dinitrosalicylic acid method(DNS), and carboxymethyl cellulose sodium salt method(CMC-Na) were used to investigate the total polysaccharide content, amylase activity, and cellulase activity during the fermentation process. Visual analysis technology was used to explore the changes in chromaticity values, revealing the fermentation process of MSK and the dynamic changes of various measurement indicators, partial least squares-discriminant analysis(PLS-DA) was used to explore the differential compounds of MSK at different fermentation degrees, and Pearson correlation analysis was used to explore the correlation between volatile components of MSK and total polysaccharides, enzyme activity, and chromaticity values. ResultsA total of 60 volatile compounds were identified from MSK, the relative contents of components such as (+)-α-pinene, β-phellandrene, β-pinene, (+)-limonene, and p-cymene obviously increased, while the relative contents of components such as safrole, methyl isoeugenol, methyleugenol, myristicin, and elemicin significantly decreased. During the fermentation process, the total polysaccharide content showed an upward trend, while the activities of amylase and cellulase showed an initial increase followed by a decrease, and reached their maximum value at 40 h. the overall brightness(L*) and total color difference(ΔE*) gradually increased, while the changes in red-green value(a*) and yellow-blue value(b*) were not obvious. PLS-DA results showed that MSK could be clearly distinguished at different fermentation times, and 13 differential biomarkers were screened out. Pearson correlation analysis results showed that the contents of α-terpinene, β-phellandrene, methyleugenol, β-cubebene and myristic acid had an obvious correlation with chromaticity values. ConclusionAfter fermentation, the volatile components, total polysaccharides, amylase activity, and cellulase activity of MSK undergo significant changes, and there is a clear correlation between them and chromaticity values, which reveals the dynamic changes in the fermentation process and related indicators of MSK, laying a foundation for the quality control. 
		                        		
		                        		
		                        		
		                        	
8.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
		                        		
		                        			
		                        			GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126. 
		                        		
		                        		
		                        		
		                        	
9.Dynamic immunological characteristics in acute rejection model of cervical heterotopic heart transplantation in mice
Xi CAO ; Tao HUANG ; Jiwei YANG ; Xiaowen WANG ; Wenfeng ZHU ; Haoqi CHEN ; Ning FAN ; Genshu WANG
Organ Transplantation 2025;16(2):256-263
		                        		
		                        			
		                        			Objective To establish an acute rejection model of cervical heart transplantation in mice and evaluate the survival and dynamic rejection process post-transplantation. Methods Mice were randomly divided into sham operation group (n=10), syngeneic transplantation group (n=21), and allogeneic transplantation group (n=65). Sham operation, syngeneic cervical heart transplantation, and allogeneic cervical heart transplantation were performed respectively. The survival of recipient mice and grafts, histopathological changes of graft tissues, subpopulations of splenic lymphocytes, and expression of inflammatory factors in serum and grafts were observed. Results The survival rate and graft survival rate of the sham operation group and syngeneic transplantation group were 100% at 7 days after surgery. In the allogeneic transplantation group, 5 cases failed and died on the first day after surgery. The survival rate at 7 days after surgery was 86%, and all surviving mice had grafts that stopped beating at 7 days after surgery. The allogeneic transplantation group showed significant rejection at 7 days after surgery, accompanied by tissue damage and CD8+ T cell infiltration. The proportion of CD8+ T cells in the spleen continued to rise post-operation, while the proportion of CD4+ T cells showed a downward trend. The expression of interferon-γ in serum and grafts peaked at 5 days after surgery, while the expression of tumor necrosis factor-α showed no statistical significance. Conclusions Acute rejection following heart transplantation in mice intensifies between 5 to 7 days after surgery, which may be a critical time window for immunological intervention.
		                        		
		                        		
		                        		
		                        	
10.Risk factors for postoperative respiratory failure in patients with esophageal cancer and the prediction model establishment
Bo YANG ; Yue BAI ; Lili LANG ; Qun CAO ; Gongjian ZHU ; Leiyun ZHUANG ; Daqiang SUN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):353-359
		                        		
		                        			
		                        			Objective To explore the risk factors for postoperative respiratory failure (RF) in patients with esophageal cancer, construct a predictive model based on the least absolute shrinkage and selection operator (LASSO)-logistic regression, and visualize the constructed model. Methods A retrospective analysis was conducted on patients with esophageal cancer who underwent surgical treatment in the Department of Thoracic Surgery, Sun Yat-sen University Cancer Center Gansu Hospital from 2020 to 2023. Patients were divided into a RF group and a non-RF (NRF) group according to whether RF occurred after surgery. Clinical data of the two groups were collected, and LASSO-logistic regression was used to optimize feature selection and construct the predictive model. The model was internally validated by repeated sampling 1000 times based on the Bootstrap method. Results A total of 217 patients were included, among which 24 were in the RF group, including 22 males and 2 females, with an average age of (63.33±9.10) years; 193 were in the NRF group, including 161 males and 32 females, with an average age of (62.14±8.44) years. LASSO-logistic regression analysis showed that the percentage of forced expiratory volume in one second/forced vital capacity (FEV1/FVC) to predicted value (FEV1/FVC%pred) [OR=0.944, 95%CI (0.897, 0.993), P=0.026], postoperative anastomotic fistula [OR=4.106, 95%CI (1.457, 11.575), P=0.008], and postoperative lung infection [OR=3.776, 95%CI (1.373, 10.388), P=0.010] were risk factors for postoperative RF in patients with esophageal cancer. Based on the above risk factors, a predictive model was constructed, with an area under the receiver operating characteristic curve of 0.819 [95%CI (0.737, 0.901)]. The Hosmer-Lemeshow test for the calibration curve showed that the model had good goodness of fit (P=0.527). The decision curve showed that the model had good clinical net benefit when the threshold probability was between 5% and 50%. Conclusion  FEV1/FVC%pred, postoperative anastomotic fistula, and postoperative lung infection are risk factors for postoperative RF in patients with esophageal cancer. The predictive model constructed based on LASSO-logistic regression analysis is expected to help medical staff screen high-risk patients for early individualized intervention.
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail