1.Structure, content and data standardization of rehabilitation medical records
Yaru YANG ; Zhuoying QIU ; Di CHEN ; Zhongyan WANG ; Meng ZHANG ; Shiyong WU ; Yaoguang ZHANG ; Xiaoxie LIU ; Yanyan YANG ; Bin ZENG ; Mouwang ZHOU ; Yuxiao XIE ; Guangxu XU ; Jiejiao ZHENG ; Mingsheng ZHANG ; Xiangming YE ; Jian YANG ; Na AN ; Yuanjun DONG ; Xiaojia XIN ; Xiangxia REN ; Ye LIU ; Yifan TIAN
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):21-32
ObjectiveTo elucidate the critical role of rehabilitation medical records (including electronic records) in rehabilitation medicine's clinical practice and management, comprehensively analyzed the structure, core content and data standards of rehabilitation medical records, to develop a standardized medical record data architecture and core dataset suitable for rehabilitation medicine and to explore the application of rehabilitation data in performance evaluation and payment. MethodsBased on the regulatory documents Basic Specifications for Medical Record Writing and Basic Specifications for Electronic Medical Records (Trial) issued by National Health Commission of China, and referencing the World Health Organization (WHO) Family of International Classifications (WHO-FICs) classifications, International Classification of Diseases (ICD-10/ICD-11), International Classification of Functioning, Disability and Health (ICF), and International Classification of Health Interventions (ICHI Beta-3), this study constructed the data architecture, core content and data standards for rehabilitation medical records. Furthermore, it explored the application of rehabilitation record summary sheets (home page) data in rehabilitation medical statistics and payment methods, including Diagnosis-related Groups (DRG), Diagnosis-Intervention Packet (DIP) and Case Mix Index. ResultsThis study proposed a systematic standard framework for rehabilitation medical records, covering key components such as patient demographics, rehabilitation diagnosis, functional assessment, rehabilitation treatment prescriptions, progress evaluations and discharge summaries. The research analyzed the systematic application methods and data standards of ICD-10/ICD-11, ICF and ICHI Beta-3 in the fields of medical record terminology, coding and assessment. Constructing a standardized data structure and data standards for rehabilitation medical records can significantly improve the quality of data reporting based on the medical record summary sheet, thereby enhancing the quality control of rehabilitation services, effectively supporting the optimization of rehabilitation medical insurance payment mechanisms, and contributing to the establishment of rehabilitation medical performance evaluation and payment based on DRG and DIP. ConclusionStructured rehabilitation records and data standardization are crucial tools for quality control in rehabilitation. Systematically applying the three reference classifications of the WHO-FICs, and aligning with national medical record and electronic health record specifications, facilitate the development of a standardized rehabilitation record architecture and core dataset. Standardizing rehabilitation care pathways based on the ICF methodology, and developing ICF- and ICD-11-based rehabilitation assessment tools, auxiliary diagnostic and therapeutic systems, and supporting terminology and coding systems, can effectively enhance the quality of rehabilitation records and enable interoperability and sharing of rehabilitation data with other medical data, ultimately improving the quality and safety of rehabilitation services.
2.Preparation and Application of Polypyrrole Conductive Hydrogels in Biomedical Field
Kun-Yu REN ; Ru-Min FU ; Yu TIAN ; Xin-Chang KANG ; Lei ZHOU ; Guo-Xin TAN
Chinese Journal of Analytical Chemistry 2024;52(1):1-12
Hydrogel is a kind of material with high water content,good biocompatibility and extracellular matrix-like property,among which polypyrrole(PPy)conductive hydrogels have both physical characteristics and excellent conductivity of hydrogels themselves.Its conductivity can be used to detect electrical signals generated in biological systems and provide electrical stimulation to regulate the activities and functions of cells and tissues.These characteristics make it widely used in the biomedical field.The recent progress of PPy conductive hydrogels in biomedical field was reviewed in this paper.In terms of classification,according to the cross-linking mechanism of PPy and hydrogel matrix,the non-covalent cross-linked PPy conductive hydrogels and covalent cross-linked PPy conductive hydrogels were divided.The applications of PPy conductive hydrogels in the biomedical field(Skin damage repair,nerve repair,myocardial repair and flexible sensing,etc.)were mainly introduced,and the development trend and challenges of PPy conductive hydrogels in the biomedical field were discussed.
3.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma.
Zheqi LIU ; Zhen ZHANG ; Yu ZHANG ; Wenkai ZHOU ; Xu ZHANG ; Canbang PENG ; Tong JI ; Xin ZOU ; Zhiyuan ZHANG ; Zhenhu REN
International Journal of Oral Science 2024;16(1):9-9
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic environment. To clarify the relationship between different metabolic regions and the tumor immune microenvironment (TME) in OSCC, Single cell (SC) and spatial transcriptomics (ST) sequencing of OSCC tissues were performed. The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data. The metabolic activity of each spot was calculated using scMetabolism, and k-means clustering was used to classify all spots into hyper-, normal-, or hypometabolic regions. CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others. Through CellPhoneDB and NicheNet cell-cell communication analysis, it was found that in the hypermetabolic region, fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts (iCAFs), and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12. The secretion of CXCL12 recruits regulatory T cells (Tregs), leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment. This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC, ST and TCGA bulk data, and highlights potential targets for therapy.
Humans
;
Carcinoma, Squamous Cell/metabolism*
;
Squamous Cell Carcinoma of Head and Neck
;
Mouth Neoplasms/metabolism*
;
Immunosuppression Therapy
;
Transforming Growth Factor beta
;
Head and Neck Neoplasms
;
Gene Expression Profiling
;
Tumor Microenvironment
4.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
5.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
6.Expert consensus on endodontic therapy for patients with systemic conditions
Xu XIN ; Zheng XIN ; Lin FEI ; Yu QING ; Hou BENXIANG ; Chen ZHI ; Wei XI ; Qiu LIHONG ; Chen WENXIA ; Li JIYAO ; Chen LILI ; Wang ZUOMIN ; Wu HONGKUN ; Lu ZHIYUE ; Zhao JIZHI ; Liang YUHONG ; Zhao JIN ; Pan YIHUAI ; Pan SHUANG ; Wang XIAOYAN ; Yang DEQIN ; Ren YANFANG ; Yue LIN ; Zhou XUEDONG
International Journal of Oral Science 2024;16(3):390-397
The overall health condition of patients significantly affects the diagnosis,treatment,and prognosis of endodontic diseases.A systemic consideration of the patient's overall health along with oral conditions holds the utmost importance in determining the necessity and feasibility of endodontic therapy,as well as selecting appropriate therapeutic approaches.This expert consensus is a collaborative effort by specialists from endodontics and clinical physicians across the nation based on the current clinical evidence,aiming to provide general guidance on clinical procedures,improve patient safety and enhance clinical outcomes of endodontic therapy in patients with compromised overall health.
7.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
8.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
9.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
10.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.

Result Analysis
Print
Save
E-mail