1.Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults (version 2024)
Qingde WANG ; Yuan HE ; Bohua CHEN ; Tongwei CHU ; Jinpeng DU ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Hua GUO ; Yong HAI ; Lijun HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Hongjian LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Hong XIA ; Guoyong YIN ; Jinglong YAN ; Wen YUAN ; Zhaoming YE ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Yingjie ZHOU ; Zhongmin ZHANG ; Wei MEI ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2024;40(2):97-106
Ankylosing spondylitis (AS) combined with lower cervical fracture is often categorized into unstable fracture, with a high incidence of neurological injury and a high rate of disability and morbidity. As factors such as shoulder occlusion may affect the accuracy of X-ray imaging diagnosis, it is often easily misdiagnosed at the primary diagnosis. Non-operative treatment has complications such as bone nonunion and the possibility of secondary neurological damage, while the timing, access and choice of surgical treatment are still controversial. Currently, there are no clinical practice guidelines for the treatment of AS combined with lower cervical fracture with or without dislocation. To this end, the Spinal Trauma Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults ( version 2024) in accordance with the principles of evidence-based medicine, scientificity and practicality, in which 11 recommendations were put forward in terms of the diagnosis, imaging evaluation, typing and treatment, etc, to provide guidance for the diagnosis and treatment of AS combined with lower cervical fracture.
2.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
3.Background, design, and preliminary implementation of China prospective multicenter birth cohort
Si ZHOU ; Liping GUAN ; Hanbo ZHANG ; Wenzhi YANG ; Qiaoling GENG ; Niya ZHOU ; Wenrui ZHAO ; Jia LI ; Zhiguang ZHAO ; Xi PU ; Dan ZHENG ; Hua JIN ; Fei HOU ; Jie GAO ; Wendi WANG ; Xiaohua WANG ; Aiju LIU ; Luming SUN ; Jing YI ; Zhang MAO ; Zhixu QIU ; Shuzhen WU ; Dongqun HUANG ; Xiaohang CHEN ; Fengxiang WEI ; Lianshuai ZHENG ; Xiao YANG ; Jianguo ZHANG ; Zhongjun LI ; Qingsong LIU ; Leilei WANG ; Lijian ZHAO ; Hongbo QI
Chinese Journal of Perinatal Medicine 2024;27(9):750-755
China prospective multicenter birth cohort (Prospective Omics Health Atlas birth cohort, POHA birth cohort) study was officially launched in 2022. This study, in collaboration with 12 participating units, aims to establish a high-quality, multidimensional cohort comprising 20 000 naturally conceived families and assisted reproductive families. The study involves long-term follow-up of parents and offspring, with corresponding biological samples collected at key time points. Through multi-omics testing and analysis, the study aims to conduct multi-omics big data research across the entire maternal and infant life cycle. The goal is to identify new biomarkers for maternal and infant diseases and provide scientific evidence for risk prediction related to maternal diseases and neonatal health.
4.Preliminary exploration on operation process for autologous ozonized blood transfusion
Jianjun WU ; Yan BAI ; Yanli BAI ; Zhanshan ZHA ; Jing CHEN ; Yahan FAN ; Jiwu GONG ; Shouyong HUN ; Hongbing LI ; Zhongjun LI ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Jiubo LIU ; Jingling LUO ; Xianjun MA ; Deying MENG ; Shijie MU ; Mei QIN ; Hui WANG ; Haiyan WANG ; Qiushi WANG ; Quanli WANG ; Xiaoning WANG ; Yongjun WANG ; Changsong WU ; Lin WU ; Jue XIE ; Pu XU ; Liying XU ; Mingchia YANG ; Yongtao YANG ; Yang YU ; Zebo YU ; Juan ZHANG ; Xiaoyu ZHOU ; Xuelian ZHOU ; Shuming ZHAO
Chinese Journal of Blood Transfusion 2023;36(2):95-100
Autologous ozonized blood transfusion(AOBT) is a therapy of re-transfusion of 100-200 mL of autologous blood after shaking and agitation with appropriate amount of oxygen-ozone in vitro. The oxidation of blood through the strong oxidation of ozone can enhance the non-specific immune response of the body, regulate the internal environment and promote health. This therapy has been increasingly applied in clinical practice, while no unified standard for the operation process in terms of ozone concentration, treatment frequency and treatment course had been established. This operation process of AOBT is primarily explored in order to standardize the operation process and ensure its safety and efficacy.
5.Clinical guideline for diagnosis and treatment of adult ankylosing spondylitis combined with thoracolumbar fracture (version 2023)
Jianan ZHANG ; Bohua CHEN ; Tongwei CHU ; Yirui CHEN ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Yong HAI ; Lijun HE ; Yuan HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Dechun LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Wei MEI ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Honghui SUN ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Yongming XI ; Hong XIA ; Jinglong YAN ; Liang YAN ; Wen YUAN ; Gang ZHAO ; Jie ZHAO ; Jianguo ZHANG ; Xiaozhong ZHOU ; Yue ZHU ; Yingze ZHANG ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2023;39(3):204-213
Ankylosing spondylitis (AS) combined with spinal fractures with thoracic and lumbar fracture as the most common type shows characteristics of unstable fracture, high incidence of nerve injury, high mortality and high disability rate. The diagnosis may be missed because it is mostly caused by low-energy injury, when spinal rigidity and osteoporosis have a great impact on the accuracy of imaging examination. At the same time, the treatment choices are controversial, with no relevant specifications. Non-operative treatments can easily lead to bone nonunion, pseudoarthrosis and delayed nerve injury, while surgeries may be failed due to internal fixation failure. At present, there are no evidence-based guidelines for the diagnosis and treatment of AS combined with thoracic and lumbar fracture. In this context, the Spinal Trauma Academic Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate the Clinical guideline for the diagnosis and treatment of adult ankylosing spondylitis combined with thoracolumbar fracture ( version 2023) by following the principles of evidence-based medicine and systematically review related literatures. Ten recommendations on the diagnosis, imaging evaluation, classification and treatment of AS combined with thoracic and lumbar fracture were put forward, aiming to standardize the clinical diagnosis and treatment of such disorder.
6.Evidence-based guideline for clinical diagnosis and treatment of acute combination fractures of the atlas and axis in adults (version 2023)
Yukun DU ; Dageng HUANG ; Wei TIAN ; Dingjun HAO ; Yongming XI ; Baorong HE ; Bohua CHEN ; Tongwei CHU ; Jian DONG ; Jun DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Yong HAI ; Lijun HE ; Yuan HE ; Dianming JIANG ; Jianyuan JIANG ; Weiqing KONG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Fei LUO ; Jianyi LI ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Jiang SHAO ; Jiwei TIAN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Xiangyang WANG ; Hong XIA ; Jinglong YAN ; Liang YAN ; Wen YUAN ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Xuhui ZHOU ; Mingwei ZHAO
Chinese Journal of Trauma 2023;39(4):299-308
The acute combination fractures of the atlas and axis in adults have a higher rate of neurological injury and early death compared with atlas or axial fractures alone. Currently, the diagnosis and treatment choices of acute combination fractures of the atlas and axis in adults are controversial because of the lack of standards for implementation. Non-operative treatments have a high incidence of bone nonunion and complications, while surgeries may easily lead to the injury of the vertebral artery, spinal cord and nerve root. At present, there are no evidence-based Chinese guidelines for the diagnosis and treatment of acute combination fractures of the atlas and axis in adults. To provide orthopedic surgeons with the most up-to-date and effective information in treating acute combination fractures of the atlas and axis in adults, the Spinal Trauma Group of Orthopedic Branch of Chinese Medical Doctor Association organized experts in the field of spinal trauma to develop the Evidence-based guideline for clinical diagnosis and treatment of acute combination fractures of the atlas and axis in adults ( version 2023) by referring to the "Management of acute combination fractures of the atlas and axis in adults" published by American Association of Neurological Surgeons (AANS)/Congress of Neurological Surgeons (CNS) in 2013 and the relevant Chinese and English literatures. Ten recommendations were made concerning the radiological diagnosis, stability judgment, treatment rules, treatment options and complications based on medical evidence, aiming to provide a reference for the diagnosis and treatment of acute combination fractures of the atlas and axis in adults.
7.Investigation on 90Sr and 137Cs activity concentrations in water in Hangzhou urban area from 2012 to 2020
Peng WANG ; Yiyao CAO ; Hong REN ; Lei ZHOU ; Hua ZOU ; Shunfei YU ; Yaoxian ZHAO ; Zhongjun LAI ; Zhiqiang XUAN
Chinese Journal of Radiological Medicine and Protection 2023;43(8):627-632
Objective:To investigate the activity concentrations of 90Sr and 137Cs in water in Hangzhou urban area. Methods:From 2012 to 2020, Qiantang River water as an important drinking water source, tap water as direct drinking water for residents, and West Lake water in tourists crowded area were selected forwater quality monitoring with respect to conctnts of 90Sr and 137Cs. The activity concentrations of 90Sr and 137Cs in water samples, as collected in wet and dry seasons resepectively, were determined by radiochemical analysis, with the 137Cs to 90Sr activity ratios obtained. Results:From 2012 to 2020, the activity concentrations of 90Sr and 137Cs in tap water were (2.0±1.1) - (7.4±0.4) mBq/L and (0.45±0.06) - (7.1±0.6) mBq/L, respectively. The 137Cs to 90Sr activity ratios ranged from 0.07 to 2.40. The activity concentrations of 90Sr and 137Cs in Qiantang River were (3.7±1.1) - (17.0±4.4) mBq/L and (0.28±0.01) - (15.0±4.5) mBq/L, respectively. The 137Cs to 90Sr activity ratios ranged from 0.03 to 0.90. The activity concentrations of 90Sr and 137Cs in West Lake water were (2.2±0.5) - (11.0±2.0) mBq/L and (0.32±0.04) - (7.9±1.9) mBq/L, respectively. The 137Cs to 90Sr activity ratios ranged from 0.05 to 1.20. Conclusions:The activity concentrations of 90Sr and 137Cs in water in Hangzhou urban area were at the background levels, lower than the concentration limits, 10 Bq/L both for 90Sr and 137Cs recommended by WHO in the 4 th edition of Guidelines for Drinking Water Quality.
8.Investigation on total radioactivity in drinking water following operation of the second phase expansion project at Qinshan Nuclear Power Plant
Lei ZHOU ; Yiyao CAO ; Hong REN ; Peng WANG ; Hua ZOU ; Shunfei YU ; Yaoxian ZHAO ; Zhiqiang XUAN ; Zhongjun LAI ; Dongxia ZHANG
Chinese Journal of Radiological Medicine and Protection 2023;43(12):1003-1009
Objective:To investigate and analyze the level of the gross radioactivity, and its variation trend, in surrounding drinking water since the second phase expansion project at Qinshan Nuclear Power Plant was officially put into operation.Methods:From 2010 to 2022, the source water, factory water and tap water within 30 km of Qinshan Nuclear Power Plant were collected in the flood season (May) and dry period (October) every year. The total α and total β radioactivity concentrations in drinking water was measured and analyzed. The levels of total radioactivity in drinking water around different nuclear power plants in China and around non-nuclear power plant areas was compared.Results:The mean radioactivity concentrations of total α and total β were (0.021±0.019) and (0.204±0.058) Bq/L in source water, (0.010±0.005) and (0.185±0.056) Bq/L in factory water , and (0.012±0.007) and (0.170±0.058) Bq/L in tap water, respectively, all lower than the limits stipulated in the Sanitary Standards for Drinking Water. There were no significant differences in the monitoring result of betweem the three types of water samples both in the flood and dry periods ( P> 0.05). The total radioactivity level in drinking water around Qinshan Nuclear Power Plant site was close to that in drinking water around different nuclear power plants in China and around areas without nuclear power plants. Conclusions:Following the second phase of the expansion project officially being put into operation, the total α and β radioactivity level in drinking water around the Qinshan Nuclear Power Plant has been in a stable trend and lower than the guidance level given in national standard.
9.Clinical effects of 3D printed porous titanium-alloy prosthesis in repairing aseptic large bone defects in the limbs
Bingchuan LIU ; Xingcai LI ; Zhuo CHEN ; Zhongjun LIU ; Fang ZHOU ; Yun TIAN
Chinese Journal of Orthopaedics 2023;43(24):1648-1654
Objective:To explore the clinical feasibility and effectiveness of using 3D printed porous titanium-alloy prosthesis to repair aseptic large bone defects in the limbs.Methods:A retrospective analysis was performed on 13 patients with aseptic bone defects of long limbs treated with 3D printed porous titanium alloy prosthesis from December 2017 to December 2022, including 7 males and 6 females, aged 52.6±11.5 years (range, 35-72 years). The bone defect locations included 2 humerus, 1 radius, 5 femur, and 6 tibia. One patient suffered both femoral and tibial defects. All 13 patients suffered from bone nonunion due to internal fixation surgery, including 5 cases of hypertrophic nonunion and 8 cases of atrophic nonunion. The interval between internal fixation surgery and this treatment was 20.1±3.6 months (range, 16.5-26.6 months). The clinical treatment effect was evaluated through parameters such as gross observation, imaging evaluation, disability of arm shoulder and hand (DASH), lower extremity functional scale (LEFS), and patient satisfaction evaluation.Results:The length of bone defect after debridement in 13 patients was 11.7±4.5 cm (range, 6.0-20.6 cm), and the length of implant was 12.9±5.3 cm (range, 6.1-22.9 cm). Partial or complete weight-bearing began at 14.8±6.5 days (range, 2-22 days) after surgery. All 13 cases were followed up for 18.3±12.5 months (range, 13-58 months). The X-ray images showed that the prosthesis and the internal fixation were stable, and the new bone gradually grew gradually from the bone defect section and formed stable bone integration with the prosthesis surface, and no prosthesis displacement or fracture occurred. At the last follow-up, the DASH scores of 3 patients with upper limb bone defect were 8.9, 10.5, and 11.2 points, respectively, and the LEFS scores of 10 patients with lower limb bone defect were 49.6±5.9 points (range, 38-56 points). No significant subsidence or loosening of all prosthetics was observed. Patient satisfaction was 9.8±0.1 points (range, 9.6-9.9).Conclusion:After the application of 3D printed porous titanium alloy prosthesis to repair the aseptic large bone defect of the limbs, the patients can carry weight and function exercise in the early stage, and the function of the affected limbs can recover significantly, and the patients have high satisfaction.
10.Clinical effects of 3D printed porous titanium-alloy prosthesis in reconstruction of long bone defects of lower extremities
Bingchuan LIU ; Xingcai LI ; Weipeng QIU ; Yong XING ; Zhongwei YANG ; Guojin HOU ; Zhongjun LIU ; Fang ZHOU ; Yufeng ZHENG ; Peng WEN ; Yun TIAN
Chinese Journal of Orthopaedics 2022;42(10):626-634
Objective:To analyze and summarize the clinical effects of 3D printed porous titanium-alloy prosthesis implantation in the treatment of long bone defects of lower extremities.Methods:We retrospectively studied the clinical cases with lower extremity bone defect treated by 3D printed porous titanium prostheses from December 2017 to November 2021. 18 patients who were followed up for more than 12 months were included in this study. The enrolled patients included 12 males and 6 females, with an average of 48.9±22.5 years (range, 13-79 years), and an average body mass index of 23.1±4.3 kg/m 2 (range, 17.2-27.1 kg/m 2). There were 14 osteomyelitis-derived bone defects and 4 nonunion-derived bone defects. The bone defect locations included 10 cases of femur and 8 cases of tibia. The average bone defect distance was 13.9±9.7 cm (range, 5.8-31.2 cm), and the proportion of the defect length to the long bone (femur of tibia) was average 33.7%±16.8% (range, 15.0%-63.0%). The clinical efficacy was comprehensively evaluated through gross observation, imaging evaluation, changes in the total length of lower extremities and long bones, femorotibial angle (FTA) measurement, lower extremity functional scale (LEFS), satisfaction, complications and other indicators, focusing on the stabilization mechanism of the prosthesis and the regeneration of new bone. Results:All 18 patients were followed up for 12-35 months, with an average of 16.3 months. Postoperative X-rays at 1, 3, 12 and 24 months showed that new bone could gradually creep along the prosthesis surface. The preoperative bone defect length of long bone and total length of lower limb were respectively 39.4±4.0 cm and 80.5±5.7 cm, which were different from those of the healthy side by 1.6±1.0 cm and 1.5±1.1 cm. One week after implantation, the length of long bone and lower limb was 39.9±3.5 cm and 80.9±6.2 cm, respectively, and the average difference was 1.0±0.6 cm and 0.9±1.1 cm compared with the healthy side. At the last follow-up, the length of long bone and lower limb was 39.7±3.6 cm and 80.9±7.8 cm, with an average difference of 1.8±1.1 cm and 1.0±0.7 cm from the healthy side. There were no significant differences in the length of long bone and lower limbs at the three time points before surgery, one week after surgery and the last follow-up ( F=0.12, 0.04; P>0.05). The average FTA of the affected limb was 174.7° (173.9°, 175.5°), 175.2°(173.5°, 176.4°), and 175.0°(173.5°, 176.3°) at three time nodes, before surgery, one week after surgery and the last follow-up, respectively, and there was no significant statistical difference in pairwise comparison ( Z=0.01, P>0.05). Patients had a mean LEFS score of 50 (46, 51) at the last follow-up, significantly higher than the preoperative score of 20 (17, 21) ( Z=-5.56, P<0.001). The mean satisfaction score of the 18 patients at the last follow-up was 9.7. Two patients (11.1%) had screw fractures but all 3D printed porous titanium alloy prostheses remained stable without significant loosening or displacement. Two patients (11.1%) had nail channel infection of external fixator, all patients with channel infection were cured by intravenous antibiotics combined with local disinfection and dressing change. Conclusion:The implantation of 3D printed porous titanium-alloy prosthesis could efficiently and safely repair the long bone defects of the lower extremities. The prosthesis could maintain stable in the early and middle postoperative period. The length of the long bones and lower limbs did not change significantly with the weight-bearing and functional exercise of the limbs. The new bone could gradually crawl and grow from both ends of the defect, and the patient's limb function recovered significantly, and the patient's satisfaction was high.

Result Analysis
Print
Save
E-mail