1.Effect of "Fahan" on Metabolites of Blumea balsamifera Analyzed by Non-targeted Metabolomics
Jiayuan CAO ; Xin XU ; Xiangsheng ZHANG ; Bingnan LIU ; Yongyao WEI ; Ke ZHONG ; Yuxin PANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):200-207
ObjectiveTo characterize the changes of metabolites of Blumea balsamifera in the process of sweating by non-targeted metabolomics, and to investigate the influence of sweating processing on the constituents of B. balsamifera. MethodsUltra performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) metabolomics was used to identify the metabolites in no sweating group(F1), sweating 2 d group(F2) and sweating 4 d group(F3), the differences of metabolites between the groups were compared by principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), and differential metabolites were screened according to the variable importance in the projection(VIP) value>1 and P<0.05, and the pathway enrichment of the differential metabolites was analyzed by Kyoto Encyclopedia of Genes and Genomes(KEGG). ResultsThe results of PCA and OPLS-DA showed a clear distinction between the three groups of samples, indicating significant differences in the compositions of the three groups of samples. A total of 433 differential metabolites were screened between the F1 and F2, with 154 up-regulated and 279 down-regulated, the significant up-regulated metabolites were tangeritin, 5-O-demethylnobiletin and so on, while the metabolites with significant down-regulation included alternariol, fortunellin, etc. A total of 379 differential metabolites were screened between the F2 and F3, with 150 up-regulated and 229 down-regulated, the significant up-regulated metabolites were isoimperatorin, helianyl octanoate and so on, and the significant down-regulated metabolites were hovenoside I, goyasaponin Ⅲ, etc. KEGG pathway enrichment analysis showed that tyrosine metabolism, isoquinoline alkaloid biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, tryptophan metabolism, valine, leucine and isoleucine biosynthesis, pantothenate and coenzyme A biosynthesis may be the key pathways affecting metabolite differences of B. balsamifera after sweating treatment. ConclusionSweating can reduce the content of endophytic mycotoxins in B. balsamifera and has a great impact on the synthesis and metabolic pathways of total flavonoids and auxin. This study can provide a reference for the process research on the sweating conditions of B. balsamifera.
2.Pharmacological Effect of Berberine on Alzheimer's Disease: A Review
Xuejing WANG ; Guangcheng ZHONG ; Shuting LI ; Qian ZHANG ; Bojie LUO ; Qi WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):286-294
Alzheimer's disease (AD), a degenerative disease of the central nervous system, is characterized by progressive degradation of learning, memory, and cognitive functions. Currently, few drugs are available for treating AD, and their effects are limited. Berberine (BBR) is a natural isoquinoline (quaternary ammonium-like) with a wide range of pharmacological effects. Studies have proven that BBR has good potential in the treatment of AD. Specifically, BBR can inhibit the generation, aggregation, and neurotoxicity of amyloid-β and the hyperphosphorylation of Tau protein, promote the clearance of phosphorylated Tau protein, reduce the cholinesterase activity, neuroinflammation, and oxidative stress, regulate neuronal apoptosis, improve the mitochondrial function and glucose and lipid metabolism, suppress the monoamine oxidase activity, and modulate gut microbiota. In addition, researchers have ameliorated the low bioavailability of BBR. Probing into the potential targets is hoped to provide a reference for further research on the prevention and treatment of AD by BBR.
3.Horticultural Therapy Combined with Intradermal Needling for Patients with Generalized Anxiety Disorder of Liver Depression Transforming into Fire Syndrome Under Transcranial Magnetic Stimulation and Psychological Therapy:Clinical Observation of 60 Cases
Wanyun ZHANG ; Jiayi YAN ; Qingyi QIU ; Yumei PENG ; Xiaoling ZHONG ; Jinwen ZHANG ; Rundong TANG ; Miao WU ; Dan HU ; Guang SU
Journal of Traditional Chinese Medicine 2025;66(1):50-58
ObjectiveTo observe the clinical effectiveness of horticultural therapy involving the planting of Chinese medicinal herbs (mint and lily potted plants) combined with intradermal needling therapy for generalized anxiety disorder (GAD) of liver depression transforming into fire syndrome under transcranial magnetic stimulation and basic psychological therapy, and to explore the possible mechanisms of action. MethodsA total of 180 patients with GAD of liver depression transforming into fire syndrome were randomly divided into three groups, horticultural therapy group, intradermal needling group, and horticultural therapy+intradermal needling group, with 60 patients in each. All groups received basic treatment including basic psychological therapy and transcranial magnetic stimulation. The horticultural therapy group received horticultural therapy in addition to the basic treatment; the intradermal needling group received intradermal needling therapy once a week for 8 weeks in addition to the basic treatment; the horticultural therapy+intradermal needling group received both horticultural therapy and intradermal needling therapy, following the same procedures and duration. Hamilton Anxiety Rating Scale (HAMA), Self-Rating Anxiety Scale (SAS), and Pittsburgh Sleep Quality Index (PSQI) scores were assessed at baseline and after 2, 4, 6, and 8 weeks of treatment. Serum levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were measured before treatment and after 8 weeks of treatment. Motor-evoked potential (MEP) baseline levels were recorded before treatment, and MEP amplitude ratios were compared after 1 week and 8 weeks of treatment. Clinical effectiveness and safety were evaluated after 8 weeks of treatment. Pearson correlation analysis was used to examine the relationships between serum ACTH and CORT levels, MEP amplitude, and anxiety. ResultsIn the horticultural therapy group and intradermal needling group, HAMA, SAS and PSQI scores after 4, 6, and 8 weeks treatment were lower than baseline scores (P<0.05). In the horticultural therapy+intradermal needling group, these scores showed a significant decline starting after 2 weeks treatment and continuing through 8 weeks after treatment (P<0.05). The HAMA, SAS, and PSQI scores in the horticultural therapy+intradermal needling group were significantly lower than those in the other two groups after 2, 4, 6, and 8 weeks treatment (P<0.05). After 8 weeks of treatment, serum CORT and ACTH levels in the horticultural therapy+intradermal needling group were significantly lower than baseline levels (P<0.05) and were also lower than those in the horticultural therapy group and intradermal needling group at the same time point (P<0.01). When comparing the level after 8 weeks treatment to that after 1 week treatment, under PAS10 stimulation, the MEP amplitude ratio in the intradermal needling group decreased at 30 minutes, while in the horticultural therapy+intradermal needling group, the MEP amplitude ratio decreased at all time points (P<0.05 or P<0.001); under PAS25 stimulation, the MEP amplitude ratio in the horticultural therapy group increased at 20 minutes, and in the intradermal needle group at 10 minutes (P<0.05). In the horticultural therapy+intradermal needling group, the MEP amplitude ratio increased significantly at all time points after treatment (P<0.001). The cure rate in the horticultural therapy+intradermal needling group (74.14%, 43/58) was significantly higher than that in the horticultural therapy group (30.00%, 18/60) and the intradermal needling group (48.28%, 28/58, P<0.05). Correlation analysis revealed that serum ACTH and CORT levels were positively correlated with HAMA scores (r = 0.488, P<0.01; r = 0.428, P<0.01). Following PAS10 intervention, the MEP amplitude ratio was positively correlated with HAMA scores (r = 0.458, P<0.01), whereas after PAS25 intervention, the MEP amplitude ratio was negatively correlated with HAMA scores (r = -0.562, P<0.01). ConclusionHorticultural therapy combined with intradermal needling treatment, under transcranial magnetic stimulation and basic psychological therapy, demonstrates significant clinical effectiveness in patients with GAD of liver depression transforming into fire syndrome. Its mechanism of action may be related to the regulation of hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis and the reduction of cortical excitability.
4.Traditional Chinese Medicine Regulates Signaling Pathways Related to Precancerous Lesions of Gastric Cancer: A Review
Maofu ZHANG ; Xinyu LI ; Yanyun SHEN ; Yeyuan LIU ; Jialin ZHONG ; Lulu CHEN ; Haihong ZHAO ; Zhongyang SONG ; Zhiming ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):297-306
Precancerous lesions of gastric cancer (PLGC) are a group of pathological changes caused by abnormalities in the structure, morphology, and differentiation of gastric mucosal epithelial cells. Since the early symptoms are hidden and non-specific, PLGC is not easy to be diagnosed and it has often developed into intermediate or advanced gastric cancer once being diagnosed and missed the best time for treatment. Accordingly, the incidence of this disease is increasing year by year, which lifts a heavy burden on the patients. The pathogenesis of PLGC is complex, involving inflammatory microenvironment, bile reflux, glycolysis, autophagy, and apoptosis. Currently, PLGC is mainly treated with anti-inflammatory and endoscopic therapies, which are difficult to curb the development of PLGC. Therefore, seeking a safe and effective therapy is an important topic of modern research. Traditional Chinese medicine (TCM), characterized by treatment based on syndrome differentiation and a holistic view, exerts effects via multiple pathways, mechanisms, and targets. Recent studies have confirmed that TCM can regulate the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), Wnt/β-catenin, Sonic Hedgehog, nuclear factor-κB (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), hypoxia-inducible factor-1α (HIF-1α), neurogenic locus notch homolog protein (Notch), nuclear factor E2-related factor 2 (Nrf2) and other signaling pathways. By targeting these pathways, TCM can inhibit aerobic glycolysis, reduce oxidative stress, repair the inflammatory microenvironment, regulate cellular autophagy, and promote vascular normalization, thereby delaying or reversing PLGC. However, few researchers have systematically summarized the TCM regulation of PLGC-associated pathways. By reviewing the relevant articles at home and abroad, this paper summarized the roles of the above signaling pathways in the development of PLGC and the research progress in the regulation of signaling pathways by TCM in the treatment of PLGC, with a view to providing a new theoretical basis for the clinical research on PLGC and the drug development for this disease.
5.Research progress of meibomian gland dysfunction-related dry eye
Jianbo ZHONG ; Guoqiang ZENG ; Yi ZHANG ; Xiaoyan DOU ; Wanmei TANG ; Kunling CHEN ; Li CAI
International Eye Science 2025;25(2):259-263
In recent years, with the endless emergence of meibomian gland dysfunction(MGD)diagnostic equipment, rich treatment methods, and in-depth clinical and basic research on MGD at home and abroad, the understanding of MGD has entered a new stage. MGD-related dry eye is considered to be the main cause of lipid abnormal dry eye, and its occurrence and development is a chronic and multi-factorial pathological process. This article reviews the pathogenesis, imaging analysis and clinical treatment progress of MGD-related dry eye, in order to provide scientific evidence and ideas for clinical diagnosis and therapy of MGD-related dry eye.
6.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes.
7.Technological development frontier and future trend of cardiovascular surgery
Xiaoke SHANG ; Changdong ZHANG ; Yucheng ZHONG ; Nianguo DONG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):41-53
In recent years, the field of cardiovascular surgery has undergone revolutionary changes and made rapid progress in various aspects, bringing more hope and possibilities for the health and well-being of patients. The constant emergence of new technologies brings new opportunities and hope, as well as constant challenges to past concepts. This article aims to provide a comprehensive overview of the latest developments in cardiovascular surgery in recent years, especially since 2023. It introduces cutting-edge knowledge and technologies in the field of cardiovascular surgery, including lifelong management of aortic valve disease, artificial valves, mitral valves, treatment options for hypertrophic obstructive cardiomyopathy, heart transplantation, left ventricular assist, coronary artery surgery, cardiac structural interventions for chronic heart failure, aortic dissection, and comprehensive surgical treatment of atrial fibrillation. It also analyzes and explores future development directions in depth, aiming to provide useful references and inspiration for cardiovascular doctors and jointly promote the continuous progress of cardiovascular surgery in China.
8.Effect of Dingzhi Xiaowan on PI3K/Akt/mTOR/HIF-1α Pathway in Post-stroke Cognitive Impairment Model Mice
Han ZHANG ; Yu WANG ; Xiaoqin ZHONG ; Zhenqiu NING ; Dafeng HU ; Minzhen DENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):1-11
ObjectiveTo investigate the effect of Dingzhi Xiaowan (DZXW) in post-stroke cognitive impairment (PSCI) model mice. MethodsThe cerebral ischemia-reperfusion injury model of mice was established by using the middle cerebral artery occlusion method. Forty C57BL/6 male mice were randomly divided into the sham operation group, model group, low-dose DZXW group (1.43 g·kg-1), and high-dose DZXW group (2.56 g·kg-1), with 10 mice in each group. Both the sham operation group and the model group were treated with equal amounts of normal saline by gavage, and the above four groups of mice were gavaged once a day for 30 consecutive days. Morris water maze test was used to evaluate the learning memory ability of mice. Serum levels of amyloid precursor protein (APP), amyloid 42 (Aβ42), acetylcholinesterase (AChE), and superoxide dismutase (SOD) were measured by enzyme-linked immunosorbent assay (ELISA). Deoxyribonucleotide end transferase-mediated nick end labelling (TUNEL) assay was applied to detect the degree of apoptosis in the mouse's hippocampal neurons. Western blot was used to detect the protein expression of phosphoinositol-3 kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), hypoxia-inducible factor 1-alpha (HIF-1α), B-cell lymphoma 2 (Bcl-2) homologous structural domain protein (Beclin1), sequestosome 1 (p62), microtubule-associated protein light chain 3 (LC3), Bcl-2, and Bcl-2-associated X protein (Bax) in hippocampal tissue. Prussian blue staining was used to detect iron deposition in hippocampal tissue. Transmission electron microscopy was taken to observe the ultrastructure of the mouse's hippocampal neurons. ResultsCompared with the sham operation group, the latency, APP, Aβ42, AChE, TUNEL positivity, ferric ion deposition, HIF-1α, Beclin1, Bax, and LC3Ⅱ/Ⅰ were significantly increased in the model group (P<0.01), while the number of crossing platforms, SOD, p-PI3K, p-Akt, p-mTOR, p62, and Bcl-2 were significantly decreased (P<0.01). Compared with the model group, the latency, APP, Aβ42, AChE, TUNEL positivity rate, ferric ion deposition, HIF-1α, Beclin1, Bax, and LC3Ⅱ/Ⅰ were significantly reduced in the DZXW groups (P<0.05), while the number of crossing platforms, SOD, p-PI3K, p-Akt, p-mTOR, p62, and Bcl-2 were significantly higher (P<0.05). ConclusionDZXW can alleviate cognitive impairment induced by oxidative stress-aggravated hippocampal neuronal damage in PSCI model mice by modulating the PI3K/Akt/mTOR/HIF-1α autophagy signalling pathway.
9.Mechanism of Xinnao shutong capsule alleviating cerebral ischemia-reperfusion injury in rats by regulating ferroptosis
Huani LI ; Changhe LIU ; Xiaoyan GUO ; Xin ZHONG ; Wei ZHANG ; Wenjing GE
China Pharmacy 2025;36(3):306-311
OBJECTIVE To study the mechanism of Xinnao shutong capsule alleviating cerebral ischemia reperfusion injury (CIRI) in rats by regulating the ferroptosis pathway. METHODS SD rats were randomly divided into sham operation group, model group, Xinnao shutong low-dose, high-dose group (220, 440 mg/kg), Ginkgo biloba leaves extract group (positive control, 150 mg/kg). Each group of rats was orally administered with the corresponding medication/normal saline for 7 consecutive days. Transient occlusion of the middle cerebral artery was adopted to induce the CIRI model; the samples were taken 24 h after the operation; the cerebral infarction area of rats was detected, and the cerebral infarction rate was calculated. The pathological changes of brain tissues were observed, and the levels of lipid peroxide (LPO), malondialdehyde (MDA) and glutathione (GSH) in cerebral tissue were detected; mRNA and protein expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase 1(HO-1) and glutathione peroxidase 4 (GPX4) were all detected in cerebral tissue of rats. RESULTS Compared with model group, the cerebral infarction rate, the content of total iron in cerebral tissue and serum level of LPO (except for Ginkgo biloba leaves extract group and Xinnao shutong low-dose group) were all decreased significantly in G. biloba leaves extract group and Xinnao shutong groups (P<0.05 or P<0.01); the serum level of GSH, the protein and mRNA expressions of Nrf2, HO-1 and GPX4 were all increased significantly (P<0.05 or P<0.01). The pathological damage to brain tissue was reduced, the number of nerve cells increased, the edema was alleviated, and the nuclear membrane was flattened. CONCLUSIONS Xinnao shutong capsule can inhibit ferroptosis and reduce CIRI, the mechanism of which may be associated with the activation of the Nrf2/HO-1/GPX4 signaling pathway.
10.Long-term outcomes of totally endoscopic minimally invasive mitral valve repair for Barlow’s disease: A retrospective cohort study
Lishan ZHONG ; Yanying HUANG ; Zhenzhong WANG ; Shuo XIAO ; Yuxin LI ; Dou FANG ; Qiuji WANG ; Chaolong ZHANG ; Huanlei HUANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):114-120
Objective To examine the safety, efficacy and durability of totally endoscopic minimally invasive (TEMI) mitral valve repair in Barlow’s disease (BD). Methods A retrospective study was performed on patients who underwent mitral valve repair for BD from January 2010 to June 2021 in the Guangdong Provincial People’s Hospital. The patients were divided into a MS group and a TEMI group according to the surgery approaches. A comparison of the clinical data between the two groups was conducted. Results A total of 196 patients were enrolled, including 133 males and 63 females aged (43.8±14.9) years. There were 103 patients in the MS group and 93 patients in the TEMI group. No hospital death was observed. There was a higher percentage of artificial chordae implantation in the TEMI group compared to the MS group (P=0.020), but there was no statistical difference between the two groups in the other repair techniques (P>0.05). Although the total operation time between the two groups was not statistically different (P=0.265), the TEMI group had longer cardiopulmonary bypass time (P<0.001) and aortic clamp time (P<0.001), and shorter mechanical ventilation time (P<0.001) and postoperative hospitalization time (P<0.001). No statistical difference between the two groups in the adverse perioperative complications (P>0.05). The follow-up rate was 94.2% (180/191) with a mean time of 0.2-12.4 (4.0±2.4) years. Two patients in the MS group died with non-cardiac reasons during the follow-up period. The 3-year, 5-year and 10-year overall survival rates of all patients were 100.0%, 99.2%, 99.2%, respectively. Compared with the MS group, there was no statistical difference in the survival rate, recurrence rate of mitral regurgitation, reoperation rate of mitral valve or adverse cardiovascular and cerebrovascular events in the TEMI group (P>0.05). Conclusion TEMI approach is a safe, feasible and effective approach for BD with a satisfying long-term efficacy.

Result Analysis
Print
Save
E-mail